【題目】在平面直角坐標系xOy中,對于直線l:ax+by+c=0和點P1(x1 , y1),P2(x2 , y2),記η=(ax1+by1+c)(ax2+by2+c),若η<0,則稱點P1 , P2被直線l分隔,若曲線C與直線l沒有公共點,且曲線C上存在點P1、P2被直線l分隔,則稱直線l為曲線C的一條分隔線.
(1)求證:點A(1,2),B(﹣1,0)被直線x+y﹣1=0分隔;
(2)若直線y=kx是曲線x2﹣4y2=1的分隔線,求實數(shù)k的取值范圍;
(3)動點M到點Q(0,2)的距離與到y(tǒng)軸的距離之積為1,設點M的軌跡為曲線E,求證:通過原點的直線中,有且僅有一條直線是E的分隔線.

【答案】
(1)證明:把點(1,2)、(﹣1,0)分別代入x+y﹣1 可得(1+2﹣1)(﹣1﹣1)=﹣4<0,

∴點(1,2)、(﹣1,0)被直線 x+y﹣1=0分隔


(2)解:聯(lián)立直線y=kx與曲線x2﹣4y2=1可得 (1﹣4k2)x2=1,根據(jù)題意,此方程無解,故有 1﹣4k2≤0,

∴k≤﹣ ,或 k≥

曲線上有兩個點(﹣1,0)和(1,0)被直線y=kx分隔


(3)證明:設點M(x,y),則 |x|=1,故曲線E的方程為[x2+(y﹣2)2]x2=1 ①.

y軸為x=0,顯然與方程①聯(lián)立無解.

又P1(1,2)、P2(﹣1,2)為E上的兩個點,且代入x=0,有 η=1×(﹣1)=﹣1<0,

故x=0是一條分隔線.

若過原點的直線不是y軸,設為y=kx,代入[x2+(y﹣2)2]x2=1,可得[x2+(kx﹣2)2]x2=1,

令f(x)=[x2+(kx﹣2)2]x2﹣1,

∵k≠2,f(0)f(1)=﹣(k﹣2)2<0,∴f(x)=0沒有實數(shù)解,

k=2,f(x)=[x2+(2x﹣2)2]x2﹣1=0沒有實數(shù)解,

即y=kx與E有公共點,

∴y=kx不是E的分隔線.

∴通過原點的直線中,有且僅有一條直線是E的分隔線.


【解析】(1)把A、B兩點的坐標代入η=(ax1+by1+c)(ax2+by2+c),再根據(jù)η<0,得出結論.(2)聯(lián)立直線y=kx與曲線x2﹣4y2=1可得 (1﹣4k2)x2=1,根據(jù)此方程無解,可得1﹣4k2≤0,從而求得k的范圍.(3)設點M(x,y),與條件求得曲線E的方程為[x2+(y﹣2)2]x2=1 ①.由于y軸為x=0,顯然與方程①聯(lián)立無解.把P1、P2的坐標代入x=0,由η=1×(﹣1)=﹣1<0,可得x=0是一條分隔線.
【考點精析】本題主要考查了一般式方程的相關知識點,需要掌握直線的一般式方程:關于的二元一次方程(A,B不同時為0)才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】第一屆“一帶一路”國際合作高峰論壇于2017年5月14日至15日在北京舉行,這是2017年我國重要的主場外交活動,對推動國際和地區(qū)合作具有重要意義.某高中政教處為了調(diào)查學生對“一帶一路”的關注情況,在全校組織了“一帶一路知多少”的知識問卷測試,并從中隨機抽取了12份問卷,得到其測試成績(百分制),如莖葉圖所示.

(1)寫出該樣本的眾數(shù)、中位數(shù),若該校共有3000名學生,試估計該校測試成績在70分以上的人數(shù);

(2)從所抽取的70分以上的學生中再隨機選取4人.

①記表示選取4人的成績的平均數(shù),求;

②記表示測試成績在80分以上的人數(shù),求的分布和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形中, , , , 分別為, 的中點,以為圓心, 為半徑的圓交,點在弧上運動(如圖).若,其中, ,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

上的最大值為M,最小值為m

,求a的取值范圍;

證明:;

上恒成立,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…為自然對數(shù)的底數(shù).
(1)設g(x)是函數(shù)f(x)的導函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)統(tǒng)計某射擊運動員隨機命中的概率可視為,為估計該運動員射擊4次恰好命中3次的概率,現(xiàn)采用隨機模擬的方法,先由計算機產(chǎn)生0到9之間取整數(shù)的隨機數(shù),用0,1,2 沒有擊中,用3,4,5,6,7,8,9 表示擊中,以 4個隨機數(shù)為一組, 代表射擊4次的結果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):

7525,0293,7140,9857,0347,4373,8638,7815,1417,5550

0371,6233,2616,8045,6011,3661,9597,7424,7610,4281

根據(jù)以上數(shù)據(jù),則可估計該運動員射擊4次恰好命中3次的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個人有n把鑰匙,其中只有一把可以打開房門,他隨意的進行試開,若試開過的鑰匙放在一邊,試開次數(shù)X為隨機變量,則P(X=k)=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是偶函數(shù)的導函數(shù),在區(qū)間上的唯一零點為2,并且當,則使得成立的的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若為奇函數(shù),求的值;

(2)試判斷內(nèi)的單調(diào)性,并用定義證明.

查看答案和解析>>

同步練習冊答案