表面積為4π的球O與平面角為鈍角的二面角的兩個(gè)半平面相切于A、B兩點(diǎn),三角形OAB的面積,則球心到二面角的棱的距離為   
【答案】分析:根據(jù)表面積為4π的球,可求半徑為1,根據(jù)截面圖,可知PA和PB是球的大圓切線,OP是球心至棱的距離,從而可求.
解答:解:由題意,S=4πR2=4π,∴R=1,
根據(jù)截面圖,PA和PB是球的大圓切線,OP是球心至棱的距離,
∵S△OAB=sin∠AOB=sin∠AOB=,
∴sin∠AOB=,
∴cos∠AOB=,
∴cos,
∵cos

點(diǎn)評(píng):本題以二面角為載體,考查球的表面積,考查球的截面,考查三角函數(shù),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

表面積為4π的球O與平面角為鈍角的二面角的兩個(gè)半平面相切于A、B兩點(diǎn),三角形OAB的面積S=
2
5
,則球心到二面角的棱的距離為
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

表面積為4π的球O與平面角為鈍角的二面角的兩個(gè)半平面相切于A、B兩點(diǎn),△OAB的面積S=,則A、B兩點(diǎn)間的距離為_(kāi)_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

表面積為4π的球O與平面角為鈍角的二面角的兩個(gè)半平面相切于A、B兩點(diǎn),三角形OAB的面積S=
2
5
,則球心到二面角的棱的距離為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年重慶市暨華中學(xué)高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

表面積為4π的球O與平面角為鈍角的二面角的兩個(gè)半平面相切于A、B兩點(diǎn),三角形OAB的面積,則球心到二面角的棱的距離為   

查看答案和解析>>

同步練習(xí)冊(cè)答案