已知圓C:(x-1)2+(y+2)2=9,直線l:(m+1)x-y-2m-3=0(m∈R)
(1)求證:無論m取什么實數(shù),直線恒與圓交于兩點;
(2)求直線l被圓C所截得的弦長最小時的直線方程.
【答案】分析:(1)將直線l解析式變形得到直線l恒過(2,-1),再判斷出此點在圓C內(nèi)部,即可得到直線與圓相交,即直線恒與圓交于兩點,得證;
(2)由垂徑定理:(2=r2-d2(a表示弦長,r表示半徑,d表示圓心到直線的距離),當(dāng)d越大的時候,弦長a越小,根據(jù)垂線段最短可知,當(dāng)l⊥CA時,直線l被圓C所截得的弦長最小,根據(jù)A與C坐標求出直線AC斜率,進而求出直線l斜率,即可確定出此時直線l的方程.
解答:解:(1)∵l:m(x-2)+(x-y-3)=0,
∴直線l恒過的交點,即(2,-1),
將點(2,-1)代入圓C的方程得(2-1)2+(-1+2)2=2<9,
∴點(2,-1)在圓內(nèi),
∴無論m取什么值,直線恒與圓相交;
(2)由垂徑定理:(2=r2-d2(a表示弦長,r表示半徑,d表示圓心到直線的距離),
當(dāng)d越大的時候,弦長a越小,
根據(jù)垂線段最短可知,當(dāng)l⊥CA時,直線l被圓C所截得的弦長最小,
∵A(2,-1),C(1,-2),
∴kCA=1,
∴kl=-1,
∴直線l的方程為y=-(x-2)-1,即x+y-1=0.
點評:此題考查了直線與圓的位置關(guān)系,直線與圓的位置關(guān)系由d與r大小來判斷,當(dāng)d>r時,直線與圓相離;當(dāng)d<r時,直線與圓相交;當(dāng)d=r時,直線與圓相切(其中d為圓心到直線的距離,r為圓的半徑).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x+1)2+y2=25及點A(1,0),Q為圓上一點,AQ的垂直平分線交CQ于M,則點M的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+y2=9內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B
(1)當(dāng)弦AB被點P平分時,寫出直線l的方程;
(2)當(dāng)直線l的傾斜角為45°時,求弦AB的長.
(3)設(shè)圓C與x軸交于M、N兩點,有一動點Q使∠MQN=45°.試求動點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+y2=9內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.
(1)當(dāng)l經(jīng)過圓心C時,求直線l的方程;
(2)當(dāng)弦AB的長為4
2
時,寫出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=5,直線l:x-y=0,則C關(guān)于l的對稱圓C′的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y+1)2=1,那么圓心C到坐標原點O的距離是
2
2

查看答案和解析>>

同步練習(xí)冊答案