在中,角,,的對邊為,,且;
(Ⅰ)求的值;
(Ⅱ)若,,求的值.
(Ⅰ);(Ⅱ)或者
解析試題分析:(Ⅰ)因為在中,角,,的對邊為,,且;通過化簡,可得三角形三邊的關(guān)系,結(jié)合余弦定理即可求出結(jié)論.
(Ⅱ)由三角形的面積公式即可得到一個關(guān)于的等式,又由前題可得的關(guān)系式,通過解關(guān)于的方程即可求得結(jié)論.本題的關(guān)鍵就是應(yīng)用三角形的余弦定理即三角形的面積公式.還有就是通過整體性解方程的思維.
試題解析:(Ⅰ)由可得,所以.所以. 又,所以.
(Ⅱ)由(Ⅰ)可知,所以.可得.又由以及余弦定理可知,即,又代入可得.又由可得或者.
考點:1.余弦定理.2.三角形的面積.3.二元二次的方程組的思想.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在銳角△ABC中,角A,B,C的對邊分別為a,b,c.已知sin(A-B)=cosC.
(1)若a=3,b=,求c;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,為,的等差中項.
(1)求A;
(2)若a=2,△ABC的面積為,求b,c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,某飼養(yǎng)場要建造一間兩面靠墻的三角形露天養(yǎng)殖場,已知已有兩面墻的夾角為60°(即),現(xiàn)有可供建造第三面圍墻的材料60米(兩面墻的長均大于60米),為了使得小老虎能健康成長,要求所建造的三角形露天活動室盡可能大,記,
(1)問當(dāng)為多少時,所建造的三角形露天活動室的面積最大?
(2)若飼養(yǎng)場建造成扇形,養(yǎng)殖場的面積能比(1)中的最大面積更大?說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c.已知cos 2A-3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5,b=5,求sin Bsin C的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com