考點:函數(shù)最值的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)單調(diào)性的定義即可判斷f(x)的單調(diào)性并證明.
(2)根據(jù)函數(shù)單調(diào)性和最值之間的關(guān)系即可求f(x)的最大值和最小值.
解答:
解:(1)函數(shù)f(x)為減函數(shù).
證明:設(shè)3≤x
1<x
2≤5,則f(x
1)-f(x
2)=
-=
(2x1+1)(x2-2)-(2x2+1)(x1-2) |
(x1-2)(x2-2) |
=
-,
∵3≤x
1<x
2≤5,
∴x
1-x
2<0,x
1-2>0,x
2-2>0,
∴f(x
1)-f(x
2)>0,
即f(x
1)>f(x
2),即函數(shù)f(x)是減函數(shù).
(2)∵函數(shù)f(x)在[3,5]上為減函數(shù).
∴當x=3時f(x)取最大值,最大值為f(3)=7
當x=5時f(x)取最小值,最小值為f(5)=
.
點評:本題主要考查函數(shù)單調(diào)性的證明和應(yīng)用,利用函數(shù)單調(diào)性的定義是解決本題的關(guān)鍵.