【題目】某校在高一年級(jí)一班至六班進(jìn)行了“社團(tuán)活動(dòng)”滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),從被調(diào)查的學(xué)生中隨機(jī)抽取了50人,具體的調(diào)查結(jié)果如表:
班號(hào) | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
頻數(shù) | 4 | 5 | 11 | 8 | 10 | 12 |
滿意人數(shù) | 3 | 2 | 8 | 5 | 6 | 6 |
現(xiàn)從一班和二班調(diào)查對(duì)象中隨機(jī)選取4人進(jìn)行追蹤調(diào)查,則選中的4人中恰有2人不滿意的概率為___________;若將以上統(tǒng)計(jì)數(shù)據(jù)中學(xué)生持滿意態(tài)度的頻率視為概率,在高一年級(jí)全體學(xué)生中隨機(jī)抽取3名學(xué)生,記其中滿意的人數(shù)為X,則隨機(jī)變量X的數(shù)學(xué)期望是___________
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國(guó)際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對(duì)于高中男體育特長(zhǎng)生而言,當(dāng)數(shù)值大于或等于20.5時(shí),我們說(shuō)體重較重,當(dāng)數(shù)值小于20.5時(shí),我們說(shuō)體重較輕,身高大于或等于我們說(shuō)身高較高,身高小于170cm我們說(shuō)身高較矮.
(Ⅰ)已知某高中共有32名男體育特長(zhǎng)生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖,請(qǐng)根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對(duì)指數(shù)有影響.
身高較矮 | 身高較高 | 合計(jì) | |
體重較輕 | |||
體重較重 | |||
合計(jì) |
(Ⅱ)①?gòu)纳鲜?/span>32名男體育特長(zhǎng)生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請(qǐng)完善下列殘差表,并求(解釋變量(身高)對(duì)于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)值)(保留兩位有效數(shù)字);
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 |
②通過(guò)殘差分析,對(duì)于殘差的最大(絕對(duì)值)的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯(cuò)誤,已知通過(guò)重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請(qǐng)?jiān)谛∶魉愕幕A(chǔ)上求出男體育特長(zhǎng)生的身高與體重的線性回歸方程.
參考數(shù)據(jù):
,,,,
參考公式:,,,,.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.811 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為菱形,∠ABC=60°,AA1AB,M,N分別為AB,AA1的中點(diǎn).
(1)求證:平面B1NC⊥平面CMN;
(2)若AB=2,求點(diǎn)N到平面B1MC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若方程在區(qū)間內(nèi)有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)已知點(diǎn),點(diǎn)為曲線上的動(dòng)點(diǎn),求線段的中點(diǎn)到直線的距離的最大值.并求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,其中,.
(1)若,判斷的單調(diào)性;
(2)當(dāng),設(shè)函數(shù)在區(qū)間上恰有一個(gè)零點(diǎn),求正數(shù)a的取值范圍;
(3)當(dāng),時(shí),證明:對(duì)于,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,過(guò)點(diǎn),且該橢圓的短軸端點(diǎn)與兩焦點(diǎn),的張角為直角.
(1)求橢圓E的方程;
(2)過(guò)點(diǎn)且斜率大于0的直線與橢圓E相交于點(diǎn)P,Q,直線AP,AQ與y軸相交于M,N兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)為曲線上的點(diǎn),,垂足為,若的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)是茶的故鄉(xiāng),也是茶文化的發(fā)源地.中國(guó)茶的發(fā)現(xiàn)和利用已有四千七百多年的歷史,且長(zhǎng)盛不衰,傳遍全球.為了弘揚(yáng)中國(guó)茶文化,某酒店推出特色茶食品“金萱排骨茶”,為了解每壺“金萱排骨茶”中所放茶葉量克與食客的滿意率的關(guān)系,通過(guò)試驗(yàn)調(diào)查研究,發(fā)現(xiàn)可選擇函數(shù)模型來(lái)擬合與的關(guān)系,根據(jù)以下數(shù)據(jù):
茶葉量克 | 1 | 2 | 3 | 4 | 5 |
4.34 | 4.36 | 4.44 | 4.45 | 4.51 |
可求得y關(guān)于x的回歸方程為( )
A.B.
C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com