【題目】設(shè)x0為函數(shù)f(x)=sinπx的零點(diǎn),且滿足|x0|+f(x0+)<33,則這樣的零點(diǎn)有( 。
A.61個(gè)
B.63個(gè)
C.65個(gè)
D.67個(gè)
【答案】C
【解析】∵x0為函數(shù)f(x)=sinπx的零點(diǎn),
∴sinπx0=0,即πx0=kπ,k∈Z,
則x0=k,則f(x0+)=sin(x0+)π=sin(x0+)π=sin(πx0+)=cosπx0 ,
若k是偶數(shù),則f(x0+)=1,
若k是奇數(shù),則f(x0+)=﹣1,
當(dāng)k是偶數(shù)時(shí),則由|x0|+f(x0+)<33得|x0|<﹣f(x0+)+33,
即|k|<﹣1+33=32,
則k=﹣30,﹣28,…28,30,共31個(gè),
當(dāng)k是奇數(shù)時(shí),則由|x0|+f(x0+)<33得|x0|<﹣f(x0+)+33,
即|k|<1+33=34,
則k=﹣33,﹣31,…31,33,共34個(gè),
故共有31+34=65個(gè),
故選:C.
根據(jù)函數(shù)零點(diǎn)的定義,先求出x0的值,進(jìn)行求出f(x0+)的值,然后解不等式即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知點(diǎn)A(a,a),B(2,3),C(3,2).
(1)若向量 , 的夾角為鈍角,求實(shí)數(shù)a的取值范圍;
(2)若a=1,點(diǎn)P(x,y)在△ABC三邊圍成的區(qū)域(含邊界)上, =m +n (m,n∈R),求m﹣n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知遞增等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2和a4的等差中項(xiàng),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若 ,Sn=b1+b2+…+bn , 求使Sn+n2n+1>62成立的正整數(shù)n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓.
(Ⅰ)若圓的切線在軸和軸上的截距相等,求此切線的方程;
(Ⅱ)從圓外一點(diǎn)向該圓引一條切線,切點(diǎn)為,為坐標(biāo)原點(diǎn),且,求使取得最小值的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面圖形ABB1A1C1C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對(duì)此空間圖形解答下列問(wèn)題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長(zhǎng);
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)M(﹣3,0),N(3,0),點(diǎn)P為坐標(biāo)平面內(nèi)一動(dòng)點(diǎn),且,則動(dòng)點(diǎn)P(x,y)到兩點(diǎn)A(﹣3,0)、B(﹣2,3)的距離之和的最小值為( )
A. 4 B. 5 C. 6 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓O為△ABC的外接圓,D為的中點(diǎn),BD交AC于E.
(Ⅰ)證明:AD2=DEDB;
(Ⅱ)若AD∥BC,DE=2EB,AD= , 求圓O的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=2,前3項(xiàng)和為S3=.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)等比數(shù)列{bn}滿足b1=a1,b4=a15,求{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】半徑為1的圓O內(nèi)切于正方形ABCD,正六邊形EFGHPR內(nèi)接于圓O,當(dāng)EFGHPR繞圓心O旋轉(zhuǎn)時(shí),的取值范圍是( 。
A.[1﹣ , 1+]
B.[﹣1- , ﹣1+]
C.[﹣ , +]
D.[-﹣ , -+]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com