形狀如圖所示的三個游戲盤中(圖①是正方形,M,N分別是所在邊中點,圖②是半徑分別為2和4的兩個同心圓,O為圓心,圖③是正六邊形,點P為其中心)各有一個玻璃小球,依次搖動三個游戲盤后,將它們水平放置,就完成了一局游戲.
(1)一局游戲后,這三個盤中的小球都停在陰影部分的概率是多少?
(2)用隨機變量X表示一局游戲后,小球停在陰影部分的事件數(shù)與小球沒有停在陰影部分的事件數(shù)之差的絕對值,求隨機變量X的分布列.
(1)(2)X的分布列為
X | 1 | 3 |
P |
【解析】(1)“一局游戲后,這三個盤中的小球停在陰影部分”分別記為事件A1,A2,A3.
由題意知,A1,A2,A3互相獨立,且P(A1)=,P(A2)=,P(A3)=,所以“一局游戲后,這三個盤中的小球都停在陰影部分”的概率為P(A1A2A3)=P(A1)P(A2)·P(A3)=××=.
(2)一局游戲后,這三個盤中的小球停在陰影部分的事件數(shù)可能是0,1,2,3,相應(yīng)的小球沒有停在陰影部分的事件數(shù)可能取值為3,2,1,0,所以X可能的取值為1,3.
由分析可得P(X=3)=P(A1A2A3)+P(123)=P(A1)·P(A2)P(A3)+P(1)P(2)P(3)=××+××=;P(X=1)=1-=.
所以X的分布列為
X | 1 | 3 |
P |
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復(fù)習專題提升訓練江蘇專用3練習卷(解析版) 題型:填空題
已知a>0,x,y滿足約束條件若z=2x+y的最小值為1,則a等于________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復(fù)習專題提升訓練江蘇專用20練習卷(解析版) 題型:填空題
如圖,正方體ABCD ?A1B1C1D1中,AB=2,點E為AD的中點,點F在CD上,若EF∥平面AB1C,則線段EF的長度等于________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復(fù)習專題提升訓練江蘇專用19練習卷(解析版) 題型:解答題
在平面直角坐標系xOy中,已知點A(0,0),B(-2,0),C(-2,1).設(shè)k為非零實數(shù),矩陣M=,N=,點A、B、C在矩陣MN對應(yīng)的變換下得到點分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復(fù)習專題提升訓練江蘇專用18練習卷(解析版) 題型:解答題
已知多項式f(n)=n5+n4+n3-n.
(1)求f(-1)及f(2)的值;
(2)試探求對一切整數(shù)n,f(n)是否一定是整數(shù)?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復(fù)習專題提升訓練江蘇專用16練習卷(解析版) 題型:解答題
如圖,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)證明B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復(fù)習專題提升訓練江蘇專用15練習卷(解析版) 題型:解答題
已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sin θ.
(1)把C1的參數(shù)方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復(fù)習專題提升訓練江蘇專用13練習卷(解析版) 題型:填空題
如圖,在平面直角坐標系xOy中,F1,F2分別為橢圓=1(a>b>0)的左、右焦點,B,C分別為橢圓的上、下頂點,直線BF2與橢圓的另一個交點為D,若cos∠F1BF2=,則直線CD的斜率為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復(fù)習與測試選擇填空限時訓練4練習卷(解析版) 題型:填空題
已知拋物線y2=ax過點A ,那么點A到此拋物線的焦點的距離為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com