(1)求證:

(2)求函數(shù)的最大值.

 

【答案】

5

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2an-2n(n∈N*),
(1)求證數(shù)列{an+2}為等比數(shù)列;
(2)若數(shù)列{bn}滿足bn=log2(an+2),Tn為數(shù)列{
bn
an+2
}的前n項(xiàng)和,求證:Tn
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=-1,?n∈N+,an+1=2an+2.
(1)求證:{an+2}是等比數(shù)列;
(2)設(shè)bn=n•an,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面為直角梯形,∠BAD=∠ADC=90°,AB=AD=PD=1,PD⊥底面ABCD,平面PBC⊥平面PBD.
(1)求證:CD=2;
(2)求平面PAD與平面PBC所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
16
+
y2
4
=1
上有兩點(diǎn)P,Q,O是坐標(biāo)原點(diǎn),若OP,OQ的斜率之積為-
1
4

(1)求證:|OP|2+|OQ|2是定值.
(2)求PQ的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an中,a1=a(a>2)且an+1=
an2
2(an-1)
(n∈N*)

(1)求證an>2(n∈N*);
(2)求證an+1<an(n∈N*);
(3)若存在k∈N*,使得ak≥3,求證:k<
ln
3
a
ln
3
4
+1

查看答案和解析>>

同步練習(xí)冊答案