分析 (1)由已知條件利用分段函數(shù)的性質(zhì)能求出函數(shù)的定義域.
(2)由已知條件利用分段函數(shù)的性質(zhì)能求出f(-$\frac{1}{2}$)與f(3)的值.
解答 解:(1)∵f(x)=$\left\{\begin{array}{l}{-2,-1≤x<0}\\{3x-2,x≥0}\end{array}\right.$,
∴函數(shù)f(x)的定義域?yàn)閧x|x≥-1}.
(2)∵f(x)=$\left\{\begin{array}{l}{-2,-1≤x<0}\\{3x-2,x≥0}\end{array}\right.$
∴f(-$\frac{1}{2}$)=-2,
f(3)=3×3-2=7.
點(diǎn)評(píng) 本題考查分段函數(shù)的定義域和函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分段函數(shù)的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<a<1 | B. | a>1 | C. | 0<a<$\frac{3}{4}$ | D. | $\frac{3}{4}$<a<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-x2+ax,x∈(0,$\frac{a}{2}$) | B. | y=-x2+$\frac{a}{2}$x,x∈(0,a) | ||
C. | y=-x2+$\frac{a}{2}$x,x∈(0,$\frac{a}{2}$) | D. | y=-2x2+ax,x∈(0,$\frac{a}{2}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com