【題目】已知函數,的最大值為.
(1)求的值;
(2)試推斷方程是否有實數解?若有實數解,請求出它的解集.
【答案】(1);(2)無實數解
【解析】
(1)由題意,對函數f(x)=-x+lnx求導數,研究出函數在定義域上的單調性,判斷出最大值,即可求出;
(2)由于函數的定義域是正實數集,故方程|2x(x-lnx)|=2lnx+x可變?yōu)?/span>,再分別研究方程兩邊對應函數的值域,即可作出判斷.
(1)已知函數,則,
可得,
令,x=1,
當0<x<1時,f′(x)>0;當x>1時,f′(x)<0.
∴f(x)在(0,1)上是增函數,在(1,+∞)上是減函數,
∴;
(2)|2x(xlnx)|=2lnx+x可得,
由(1)知f(x)max=f(1)=1,即x+lnx≤1,
∴|xlnx|≥1,
又令,,
令g′(x)>0,得0<x<e;令g′(x)<0,得x>e,
∴g(x)的增區(qū)間為(0,e),減區(qū)間為(e,+∞),
∴,∴g(x)<1,
∴|xlnx|>g(x),即恒成立,
∴方程即方程|2x(xlnx)|=2lnx+x沒有實數解.
科目:高中數學 來源: 題型:
【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數外3門統(tǒng)考科目和物理、化學等六門選考科目構成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級.參照正態(tài)分布原則,確定各等級人數所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分數區(qū)間,得到考生的等級成績.
某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).
(Ⅰ)求物理原始成績在區(qū)間(47,86)的人數;
(Ⅱ)按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區(qū)間[61,80]的人數,求X的分布列和數學期望.
(附:若隨機變量,則,,)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據某省的高考改革方案,考生應在3門理科學科(物理、化學、生物)和3門文科學科(歷史、政治、地理)的6門學科中選擇3門學科參加考試.根據以往統(tǒng)計資料,1位同學選擇生物的概率為0.5,選擇物理但不選擇生物的概率為0.2,考生選擇各門學科是相互獨立的.
(1)求1位考生至少選擇生物、物理兩門學科中的1門的概率;
(2)某校高二段400名學生中,選擇生物但不選擇物理的人數為140,求1位考生同時選擇生物、物理兩門學科的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市為了解游客人數的變化規(guī)律,提高旅游服務質量,收集并整理了2016年1月至2018年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.
根據該折線圖,判斷下列結論:
(1)月接待游客量逐月增加;
(2)年接待游客量逐年增加;
(3)各年的月接待游客量高峰期大致在7,8月;
(4)各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn).
其中正確結論的個數為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某醫(yī)院體檢中心為回饋大眾,推出優(yōu)惠活動:對首次參加體檢的人員,按200元/次收費,并注冊成為會員,對會員的后續(xù)體檢給予相應優(yōu)惠(本次即第一次),標準如下:
體檢次序 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次及以上 |
收費比例 | 1 | 0.95 | 0.90 | 0.85 | 0.8 |
該體檢中心從所有會員中隨機選取了100位對他們在本中心參加體檢的次數進行統(tǒng)計,得到數據如下表:
體檢次數 | 一次 | 兩次 | 三次 | 四次 | 五次及以上 |
頻數 | 60 | 20 | 12 | 4 | 4 |
假設該體檢中心為顧客體檢一次的成本費用為150元,根據所給數據,解答下列問題:
(1)已知某顧客在此體檢中心參加了3次體檢,求這3次體檢,該體檢中心的平均利潤;
(2)該體檢中心要從這100人里至少體檢3次的會員中,按體檢次數用分層抽樣的方法抽出5人,再從這5人中抽取2人發(fā)放紀念品,求抽到的2人中恰有1人體檢3次的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)設點,直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸長為4,且經過點.
(1)求橢圓的方程;
(2)直線的斜率為,且與橢圓相交于,兩點(異于點),過作的角平分線交橢圓于另一點.證明:直線與坐標軸平行.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com