中心在原點(diǎn),坐標(biāo)軸為對(duì)稱軸,實(shí)軸與虛軸長(zhǎng)之差為2,離心率為的雙曲線方程為_(kāi)_______.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的中心在原點(diǎn),坐標(biāo)軸為對(duì)稱軸,一條漸近線方程y=
4
3
x
,右焦點(diǎn)F(5,0),雙曲線的實(shí)軸為A1A2,P為雙曲線上一點(diǎn)(不同于A1,A2),直線A1P、A2P分別與直線l:x=
9
5
交于M、N兩點(diǎn).
(Ⅰ)求雙曲線的方程;
(Ⅱ)求證:
FM
FN
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)雙曲線的中心在原點(diǎn),坐標(biāo)軸為對(duì)稱軸,一條漸近線方程y=
4
3
x
,右焦點(diǎn)F(5,0),求雙曲線方程;
(2)若拋物線x=
1
8
y2的準(zhǔn)線經(jīng)過(guò)F點(diǎn)且橢圓C經(jīng)過(guò)P(2,3),求此時(shí)橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓的中心在原點(diǎn),坐標(biāo)軸為對(duì)稱軸,焦點(diǎn)在x軸上,一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的連線互相垂直,且此焦點(diǎn)與長(zhǎng)軸上較近的端點(diǎn)距離為4 ( 
2
-1 )
,
(1)求此橢圓方程,并求出準(zhǔn)線方程;
(2)若P在左準(zhǔn)線l上運(yùn)動(dòng),求tan∠F1PF2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓中心在原點(diǎn),坐標(biāo)軸為對(duì)稱軸,離心率是
2
2
,過(guò)點(diǎn)(4,0),則橢圓的方程是( 。
A、
x2
16
+
y2
8
=1
B、
x2
16
+
y2
8
=1
x2
8
+
y2
16
=1
C、
x2
16
+
y2
32
=1
D、
x2
16
+
y2
8
=1
x2
16
+
y2
32
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線中心在原點(diǎn),以坐標(biāo)軸為對(duì)稱軸且與圓相交于A(4, -1),若此圓在點(diǎn)A的切線與雙曲線的一條漸進(jìn)線平行,則雙曲線的方程為——————

查看答案和解析>>

同步練習(xí)冊(cè)答案