設(shè)橢圓的中心在原點(diǎn),坐標(biāo)軸為對稱軸,焦點(diǎn)在x軸上,一個焦點(diǎn)與短軸兩端點(diǎn)的連線互相垂直,且此焦點(diǎn)與長軸上較近的端點(diǎn)距離為4 ( 
2
-1 )
,
(1)求此橢圓方程,并求出準(zhǔn)線方程;
(2)若P在左準(zhǔn)線l上運(yùn)動,求tan∠F1PF2的最大值.
分析:(1)由 b=c,a-c=4(
2
-1),及a2=b2+c2  解出 a、b、c 的值,即得橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè)P(-8,t),設(shè)直線PF1的斜率k1,直線PF2的斜率k2,利用到角公式進(jìn)行計(jì)算,由此能導(dǎo)出tan∠F1PF2的最大值.
解答:解:(1)設(shè)所求橢圓方程為
x2
a2
+
y2
b2
=1
(a>b>0)
如圖,
B1F1⊥B2F1,
|A1F1| =4 ( 
2
-1 )

a-c=4 ( 
2
-1 )
b=c
a2=b2+c2
(5分)
∴a2=32,b2=16(7分)
∴橢圓方程為
x2
32
+
y2
16
=1
,準(zhǔn)線方程為x=±8(9分)
(2)設(shè)P(-8,t),∵F1(-4,0),F(xiàn)2(4,0)
tan∠F1PF2= |
8t
48+t2
| = |
8
48
t
+t
| ≤
8
2
48
=
4
4
3
=
3
3

當(dāng)P(-8,±4
3
)最大值為
3
3
(13分)
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程,以及橢圓的簡單性質(zhì)的應(yīng)用,考查直線與圓錐曲線的位置關(guān)系,注意利用焦點(diǎn)到橢圓的最短距離為a-c.解題時要認(rèn)真審題,仔細(xì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率e=
3
2
.已知點(diǎn)P(0,
3
2
)
到這個橢圓上的點(diǎn)的最遠(yuǎn)距離為
7
,求這個橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率.已知點(diǎn)到這個橢圓上的點(diǎn)的最遠(yuǎn)距離為,求這個橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓的中心在原點(diǎn),坐標(biāo)軸為對稱軸, 一個焦點(diǎn)與短軸兩端點(diǎn)的連線互相垂直,且此焦點(diǎn)與長軸上較近的端點(diǎn)距離為-4,求此橢圓方程、離心率、準(zhǔn)線方程及準(zhǔn)線間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓的中心在原點(diǎn),坐標(biāo)軸為對稱軸,一個焦點(diǎn)與短軸兩端點(diǎn)的連線互相垂直,且此焦點(diǎn)與長軸上較近的端點(diǎn)距離為-4,求此橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案