如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,D,E分)別為AB,CD的中點,AE的延長線交CB于F.現(xiàn)將△ACD沿CD折起,折成二面角A-CD-B,連接AF.
(I)求證:平面AEF⊥平面CBD;
(II)當(dāng)AC⊥BD時,求二面角A-CD-B大小的余弦值.

解:
(I)證明:在Rt△ABC中,D為AB的中點,得AD=CD=DB,
又∠B=30°,得△ACD是正三角形,
又E是CD的中點,得AF⊥CD.
折起后,AE⊥CD,EF⊥CD,
又AE∩EF=E,AE?平面AED,EF?平面AEF,
故CD⊥平面AEF,

又CD?平面CDB,
故平面AEF⊥平面CBD.
(II)過點A作AH⊥EF,垂足H落在FE的延長線,
因為CD⊥平面AEF,所以CD⊥AH,
所以AH⊥平面CBD.
連接CH并延長交BD的延長線于G,
由已知AC⊥BD,得CH⊥BD,可得BD垂直于面AHC,從而得到BD垂直于線CG
可得∠CGB=90°,
因此△CEH∽△CGD,
,
設(shè)AC=a,易得
∠GDC=60°,DG=,
代入上式得EH=,
又EA=
故cos∠HEA=
又∵AE⊥CD,EF⊥CD,
∴∠AEF即為所求二面角的平面角,
故二面角A-CD-B大小的余弦值為-


分析:(I)欲證平面AEF⊥平面CBD,根據(jù)面面垂直的判定定理可知在平面CDB內(nèi)一直線與平面AEF垂直,根據(jù)翻折前后有些垂直關(guān)系不變AE⊥CD,EF⊥CD,又AE∩EF=E,AE?平面AED,EF?平面AEF,滿足線面垂直的判定定理,則CD⊥平面AEF,又CD?平面CDB,滿足定理所需條件;
(II)先作出二面角的平面角,過點A作AH⊥EF,垂足H落在FE的延長線,連接CH并延長交BD的延長線于G,根據(jù)二面角平面角的定義可知∠AEF即為所求二面角的平面角,在三角形AEF中求出此角即可求出所求.
點評:本題主要考查了面面垂直的判定,以及二面角平面角的度量,考查學(xué)生空間想象能力,邏輯思維能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,D為BC上一點,∠DAC=30°,BD=2,AB=2
3
,則AC的長為( 。
A、2
2
B、3
C、
3
D、
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于點P.
(1)若AE=CD,點M為BC的中點,求證:直線MP∥平面EAB
(2)若AE=2,CD=1,求銳二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O點,OA=OB,DO=2,曲線E過C點,動點P在E上運動,且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;
(2)過D點的直線L與曲線E相交于不同的兩點M、N且M在D、N之間,設(shè)
DM
DN
=λ,試確定實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點,將△BCD沿直線CD翻折,若在翻折過程中存在某個位置,使得CB⊥AD,則x的取值范圍是( 。
A、(0,
3
]
B、(
2
2
,2]
C、(
3
,2
3
]
D、(2,4]

查看答案和解析>>

同步練習(xí)冊答案