【題目】已知函數(shù) (a∈R). (Ⅰ)當(dāng) 時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若 對任意的x>0恒成立,求a的取值范圍.
【答案】解:(Ⅰ)當(dāng) 時,
所以f(x)的單調(diào)遞增區(qū)間是(0,1],(﹣∞,﹣1],
單調(diào)遞減區(qū)間是[1,+∞),[﹣1,0)
(Ⅱ)由 得 ,
∴
①當(dāng)0<x<1時, ,
∴
∵ ∴a≥1
②當(dāng)x>1時, ,
∴
∵ ,
∴
綜上所述,a的取值范圍是
【解析】(Ⅰ)將a的值帶入f(x),求出f(x)的解析式,從而求出f(x)的單調(diào)區(qū)間即可;(Ⅱ)通過討論x的范圍,去掉絕對值號,分離參數(shù)a,從而求出a的范圍即可.
【考點精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減),還要掌握函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐 中,底面ABCD是直角梯形, , ,平面 底面ABCD, O為AD的中點, M是棱PC上的點, AD=2AB.
(1)求證:平面 平面PAD;
(2)若 平面BMO,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=sin2(x﹣ )的圖象沿x軸向右平移m個單位(m>0),所得圖象關(guān)于y軸對稱,則m的最小值為( )
A.π
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P(x,y)在圓x2+y2﹣6x﹣6y+14=0上
(1)求 的最大值和最小值;
(2)求x2+y2+2x+3的最大值與最小值;
(3)求x+y的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點P(﹣1,3). (Ⅰ)若直線l與直線m:3x+y﹣1=0垂直,求直線l的一般式方程;
(Ⅱ)寫出(Ⅰ)中直線l的截距式方程,并求直線l與坐標(biāo)軸圍成的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 , , , 為非零向量,且 + = , ﹣ = ,則下列說法正確的個數(shù)為( ) ①若| |=| |,則 =0;
②若 =0,則| |=| |;
③若| |=| |,則 =0;
④若 =0,則| |=| |
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1,sinθ), =(3,1).
(1)當(dāng)θ= 時,求向量2 + 的坐標(biāo);
(2)若 ∥ ,且θ∈(0, ),求sin(2θ+ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= 的定義域為集合A,函數(shù)g(x)=x﹣a(0<x<4)的值域為集合B. (Ⅰ)求集合A,B;
(Ⅱ)若集合A,B滿足A∩B=B,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈R,x2+2x﹣m=0;命題q:x∈R,mx2+mx+1>0.
(1)若命題p為真命題,求實數(shù)m的取值范圍;
(2)若命題q為假命題,求實數(shù)m的取值范圍;
(3)若命題p∨q為真命題,且p∧q為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com