已知橢圓
的離心率為
,以原點為圓心,橢圓的短半軸為半徑的圓與直線
相切,直線
與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;(2)求
的取值范圍;
試題分析:(1)先由離心率得出
與
的關系
,再由原點到直線
的距離等于
解得
,故
,橢圓方程為
;(2)聯(lián)立直線和橢圓的方程,因為直線和橢圓有兩個交點可求得
的范圍,再設出交點
,計算
,由
得范圍求得
試題解析:(Ⅰ)由題意知
,∴
,即
又
,∴
故橢圓的方程為
4分
(Ⅱ)解:由
得:
6分
設
,則
8分
∴
10分
∵
∴
, ∴
∴
的取值范圍是
. 13分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,點
分別是橢圓C:
的左、右焦點,過點
作
軸的垂線,交橢圓
的上半部分于點
,過點
作
的垂線交直線
于點
.
(1)如果點
的坐標為(4,4),求橢圓
的方程;
(2)試判斷直線
與橢圓
的公共點個數(shù),并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設點A(
,0),B(
,0),直線AM、BM相交于點M,且它們的斜率之積為
.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)若直線
過點F(1,0)且繞F旋轉,
與圓
相交于P、Q兩點,
與軌跡C相交于R、S兩點,若|PQ|
求△
的面積的最大值和最小值(F′為軌跡C的左焦點).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,以原點為圓心,橢圓的短半軸為半徑的圓與直線
相切,直線
與橢圓C相交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
為橢圓
的左,右焦點,
為橢圓上的動點,且
的最大值為1,最小值為-2.
(I)求橢圓
的方程;
(II)過點
作不與
軸垂直的直線
交該橢圓于
兩點,
為橢圓的左頂點。試判斷
的大小是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
分別是橢圓
的左、右頂點,點
在橢圓
上,且直線
與直線
的斜率之積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)如圖,已知
是橢圓
上不同于頂點的兩點,直線
與
交于點
,直線
與
交于點
.① 求證:
;② 若弦
過橢圓的右焦點
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
、
是橢圓
的左、右焦點,且離心率
,點
為橢圓上的一個動點,
的內切圓面積的最大值為
.
(1) 求橢圓的方程;
(2) 若
是橢圓上不重合的四個點,滿足向量
與
共線,
與
共
線,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,已知過橢圓
的左頂點
作直線
交
軸于點
,交橢圓于點
,若
是等腰三角形,且
,則橢圓的離心率為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
和
具有 ( )
A.相同的長軸長 | B.相同的焦點 |
C.相同的離心率 | D.相同的頂點 |
查看答案和解析>>