已知△ABC的頂點(diǎn)B,C在橢圓x2+3y2=3上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是(  )
分析:利用橢圓的定義即可得出.
解答:解:由橢圓x2+3y2=3上,化為
x2
3
+y2=1
,∴a2=3,解得a=
3

設(shè)橢圓的另一個(gè)焦點(diǎn)為A1
由橢圓的定義可得:|BA|+|BA1|=2a=|CA|+|CA1|,
∴△ABC的周長(zhǎng)=4a=4
3

故選C.
點(diǎn)評(píng):本題考查了橢圓的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的頂點(diǎn)B、C在橢圓
x2
3
+y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的頂點(diǎn)B(-1,-3),AB邊上的高CE所在直線的方程為x-3y-1=0,BC邊上中線AD所在直線的方程為8x+9y-3=0.求直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘭州模擬)已知△ABC的頂點(diǎn)B、C在橢圓
x2
12
+
y2
16
=1
上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•長(zhǎng)寧區(qū)二模)已知△ABC的頂點(diǎn)B、C在橢圓
x2
3
+y2=1上,且BC邊經(jīng)過(guò)橢圓的一個(gè)焦點(diǎn),頂點(diǎn)A是橢圓的另一個(gè)焦點(diǎn),則△ABC的周長(zhǎng)是
4
3
4
3

查看答案和解析>>

同步練習(xí)冊(cè)答案