某紡紗廠生產甲、乙兩種棉紗,已知生產甲種棉紗1噸需耗一級子棉2噸,二級子棉1噸;生產乙種棉紗需耗一級子棉1噸,二級子棉2噸;每噸甲種棉紗的利潤是600元,每噸乙種棉紗的利潤是900元;工廠在生產這兩種棉紗的計劃中要求消耗一級子棉不超過300噸,二級子棉不超過250噸.問甲、乙兩種棉紗各生產多少噸,才能使利潤總額最大?并求最大利潤總額.
【答案】分析:先設設生產甲、乙兩種棉紗分別為x噸、y噸,利潤總額為z元,根據(jù)題意抽象出x,y滿足的條件,建立約束條件,作出可行域,再根據(jù)目標函數(shù)z=600x+900y,利用截距模型,平移直線找到最優(yōu)解,即可.
解答:解:設生產甲、乙兩種棉紗分別為x噸、y噸,利潤總額為z元,
那么
z=600x+900y.(3分)
作出以上不等式組所表示的平面區(qū)域(如圖),即可行域.(6分)
作直線l:600x+900y=0,即直線l:2x+3y=0,把直線l向右上方平移至l1的位置時,直線經(jīng)過可行域上的點M,且與原點距離最大,此時z=600x+900y取最大值.
解方程組,解得M的坐標為(,).(10分)
因此,當x=,y=時,z取得最大值.此時
答:應生產甲種棉紗噸,乙種棉紗噸,能使利潤總額達到最大,最大利潤總額為13萬元.
點評:本題主要考查用線性規(guī)劃解決實際問題中的最值問題,基本思路是抽象約束條件,作出可行域,利用目標函數(shù)的類型,找到最優(yōu)解.屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某紡紗廠生產甲、乙兩種棉紗,已知生產甲種棉紗1噸需耗一級子棉2噸,二級子棉1噸;生產乙種棉紗需耗一級子棉1噸,二級子棉2噸;每噸甲種棉紗的利潤是600元,每噸乙種棉紗的利潤是900元;工廠在生產這兩種棉紗的計劃中要求消耗一級子棉不超過300噸,二級子棉不超過250噸.問甲、乙兩種棉紗各生產多少噸,才能使利潤總額最大?并求最大利潤總額.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某紡紗廠生產甲、乙兩種棉紗,已知生產甲種棉紗1噸需耗一級籽棉2噸、二級籽棉1噸;生產乙種棉紗1噸需耗一級籽棉1噸,二級籽棉2噸.每1噸甲種棉紗的利潤為900元,每1噸乙種棉紗的利潤為600元.工廠在生產這兩種棉紗的計劃中,要求消耗一級籽棉不超過250噸,二級籽棉不超過300噸.問甲、乙兩種棉紗應各生產多少噸,能使利潤總額最大?并求出利潤總額的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某紡紗廠生產甲、乙兩種棉紗,已知生產甲種棉紗1噸需耗一級子棉2噸、二級子棉1噸;生產乙種棉紗需耗一級子棉1噸、二級子棉2噸,每1噸甲種棉紗的利潤是600元,每1噸乙種棉紗的利潤是900元,工廠在生產這兩種棉紗的計劃中要求消耗一級子棉不超過300噸、二級子棉不超過250噸.甲、乙兩種棉紗應各生產多少,能使利潤總額最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某紡紗廠生產甲、乙兩種棉紗,已知生產甲種棉紗1噸需耗一級子棉2噸、二級子棉1噸;生產乙種棉紗需耗一級子棉1噸、二級子棉2噸,每1噸甲種棉紗的利潤是600元,每1噸乙種棉紗的利潤是900元,工廠在生產這兩種棉紗的計劃中要求消耗一級子棉不超過300噸、二級子棉不超過250噸.甲、乙兩種棉紗應各生產多少(精確到噸),能使利潤總額最大?

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆廣東省高一下學期期末考試數(shù)學試卷(解析版) 題型:解答題

某紡紗廠生產甲、乙兩種棉紗,已知生產甲種棉紗1噸需耗一級籽棉2噸、二級籽棉1噸;生產乙種棉紗1噸需耗一級籽棉1噸,二級籽棉2噸.每1噸甲種棉紗的利潤為900元,每1噸乙種棉紗的利潤為600元.工廠在生產這兩種棉紗的計劃中,要求消耗一級籽棉不超過250噸,二級籽棉不超過300噸.問甲、乙兩種棉紗應各生產多少噸,能使利潤總額最大?并求出利潤總額的最大值.

 

查看答案和解析>>

同步練習冊答案