分析 (Ⅰ)運(yùn)用正弦定理和誘導(dǎo)公式、兩角和的正弦公式,同角的商數(shù)關(guān)系,計(jì)算即可得到所求;
(Ⅱ)由三角形的面積公式,余弦定理,結(jié)合基本不等式,即可得到所求最大值.
解答 解:(Ⅰ)由已知及正弦定理得sinC=sinAcosB+sinBsinA ①
又A+B+C=π,故有sinC=sin(A+B)=sinAcosB+cosAsinB ②
由 ①②得sinA=cosA即tanA=1,
又$A∈(0,π)∴A=\frac{π}{4}$;
(Ⅱ)△ABC的面積為$S=\frac{1}{2}bcsinA=\frac{{\sqrt{2}}}{4}bc$,
又已知及余弦定理可得$4={b^2}+{c^2}-2bccosA≥2bc-2bccosA=(2-\sqrt{2})bc$,
∴$bc≤\frac{4}{{2-\sqrt{2}}}$,當(dāng)且僅當(dāng)b=c時(shí),等號(hào)成立,
∴$面積S=\frac{1}{2}•bcsinA≤\sqrt{2}+1$,
即面積最大值為$\sqrt{2}+1$.
點(diǎn)評(píng) 本題考查正弦定理、余弦定理和面積公式的運(yùn)用,同時(shí)考查三角函數(shù)的恒等變換公式的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 重心 3:1 | B. | 垂心 3:1 | C. | 內(nèi)心 2:1 | D. | 外心 2:1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $-\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{1}{2}$] | B. | (-∞,$\frac{1}{2}$) | C. | (-∞,1] | D. | (-∞,1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com