2.若函數(shù)f(x)=$\left\{\begin{array}{l}{(x-1)^{2},x∈[0,+∞)}\\{x+1,x∈(-∞,0)}\end{array}\right.$,則f(x)的單調(diào)增區(qū)間是(-∞,0],[1,+∞).

分析 畫出分段函數(shù)f(x)=$\left\{\begin{array}{l}{(x-1)^{2},x∈[0,+∞)}\\{x+1,x∈(-∞,0)}\end{array}\right.$的圖象,數(shù)形結(jié)合可得f(x)的單調(diào)增區(qū)間.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{(x-1)^{2},x∈[0,+∞)}\\{x+1,x∈(-∞,0)}\end{array}\right.$的圖象如下圖所示:

由圖可得:f(x)的單調(diào)增區(qū)間是:(-∞,0],[1,+∞),
故答案為:(-∞,0],[1,+∞)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,熟練掌握并正確理解分段函數(shù)的單調(diào)性,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)y=f(x)的圖象上不同兩點(diǎn)A(x1,y1),B(x2,y2)處的切線的斜率分別是kA,kB,規(guī)定φ(A,B)=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$叫做曲線y=f(x)在點(diǎn)A與點(diǎn)B之間的“彎曲度”.設(shè)曲線y=ex上不同兩點(diǎn)A(x1,y1),B(x2,y2),且x1-x2=1,若t•φ(A,B)<1恒成立,試求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.比較下列各組數(shù)的大。
(1)1.5${\;}^{\frac{1}{3}}$,1.7${\;}^{\frac{1}{3}}$,1;
(2)(-$\frac{\sqrt{2}}{2}$)${\;}^{-\frac{2}{3}}$,(-$\frac{10}{7}$)${\;}^{\frac{2}{3}}$,1.1${\;}^{-\frac{4}{3}}$;
(3)3.8${\;}^{-\frac{2}{3}}$,3.9${\;}^{\frac{2}{5}}$,(-1.8)${\;}^{\frac{3}{5}}$;
(4)31.4,51.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.證明整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am•an=am+n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.1g2+1g100${\;}^{\frac{1}{2}-lg\sqrt{2}}$的值為( 。
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.化簡(jiǎn):
(1)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4^{\frac{2}{3}}+2{a}^{\frac{1}{3}}^{\frac{1}{3}}+{a}^{\frac{2}{3}}}$÷(1-2$\frac{\root{3}}{\root{3}{a}}$)×$\root{3}{a}$;
(2)$\frac{x-y}{{x}^{\frac{1}{3}}-{y}^{\frac{1}{3}}}$-$\frac{x+y}{{x}^{\frac{1}{3}}+{y}^{\frac{1}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線y=x2+4x+7,求將這條拋物線平移到頂點(diǎn)與坐標(biāo)原點(diǎn)重合時(shí)的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下面各選項(xiàng)中,兩個(gè)集合相等的是( 。
A.M={(1,2)},N={(2,1)}B.M=(1,2),N={(1,2)}
C.M=∅,N={0}D.M={x|x2-3x+2=0},N={1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,正方形ABCD與矩形ACEF所在平面互相垂直,AB=$\sqrt{2}$,AF=1,M在EF上,且AM∥平面BDE,則M點(diǎn)的坐標(biāo)為( 。
A.(1,1,1)B.($\frac{\sqrt{2}}{3}$,$\frac{\sqrt{2}}{3}$,1)C.($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,1)D.($\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{4}$,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案