已知直線l滿足下列條件:過直線y = – x + 1和y = 2x + 4的交點; 且與直線x –3y + 2 = 0 垂直,(1)求直線l的方程.. (2) 已知點A的坐標為(-4,4),求點A關(guān)于直線的對稱點A′的坐標。

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 解:(1)由,得 交點 ( –1, 2 ),∵ k l = – 3,                                                    

  ∴ 所求直線l的方程為: 3x + y + 1 = 0. 

(2)設(shè)點A′的坐標為(′,′).因為點AA′關(guān)于直線對稱,所以AA′⊥,且AA′的中點在上,而直線的斜率是-3,所以.又因為 ①再因為直線的方程為3+1=0,AA′的中點坐標是(),所以3·+1=0 ②,由①和②,解得′=1/5,′=27/5.所以A′點的坐標為(1/5,27/5)

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知兩條直線l1:3x+4y-2=0與l2:2x+y+2=0的交點P,分別求滿足下列條件的直線方程
(1)過點P且過原點的直線方程;
(2)過點P且垂直于直線l3:x-2y-1=0的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列是有關(guān)直線與圓錐曲線的命題:
①過點(2,4)作直線與拋物線y2=8x有且只有一個公共點,這樣的直線有2條;
②過拋物線y2=4x的焦點作一條直線與拋物線相交于A,B兩點,它們的橫坐標之和等于5,則這樣的直線有且僅有兩條;
③過點(3,1)作直線與雙曲線
x2
4
-y2=1
有且只有一個公共點,這樣的直線有3條;
④過雙曲線x2-
y2
2
=1
的右焦點作直線l交雙曲線于A,B兩點,若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線x2-
y2
2
=1
和點A(1,1),過點A能作一條直線l,使它與雙曲線交于P,Q兩點,且點A恰為線段PQ的中點.
其中說法正確的序號有
①②④
①②④
.(請寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列是有關(guān)直線與圓錐曲線的命題:
①過點(2,4)作直線與拋物線y2=8x有且只有一個公共點,這樣的直線有2條;
②過拋物線y2=4x的焦點作一條直線與拋物線相交于A,B兩點,它們的橫坐標之和等于5,則這樣的直線有且僅有兩條;
③過點(3,1)作直線與雙曲線
x2
4
-y2=1
有且只有一個公共點,這樣的直線有3條;
④過雙曲線x2-
y2
2
=1
的右焦點作直線l交雙曲線于A,B兩點,若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線x2-
y2
2
=1
和點A(1,1),過點A能作一條直線l,使它與雙曲線交于P,Q兩點,且點A恰為線段PQ的中點.
其中說法正確的序號有______.(請寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省資陽市高二(下)期末數(shù)學試卷(理科)(解析版) 題型:填空題

下列是有關(guān)直線與圓錐曲線的命題:
①過點(2,4)作直線與拋物線y2=8x有且只有一個公共點,這樣的直線有2條;
②過拋物線y2=4x的焦點作一條直線與拋物線相交于A,B兩點,它們的橫坐標之和等于5,則這樣的直線有且僅有兩條;
③過點(3,1)作直線與雙曲線有且只有一個公共點,這樣的直線有3條;
④過雙曲線的右焦點作直線l交雙曲線于A,B兩點,若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線和點A(1,1),過點A能作一條直線l,使它與雙曲線交于P,Q兩點,且點A恰為線段PQ的中點.
其中說法正確的序號有    .(請寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年河北省衡水市冀州中學高一(下)期末數(shù)學試卷A(解析版) 題型:解答題

已知兩條直線l1:3x+4y-2=0與l2:2x+y+2=0的交點P,分別求滿足下列條件的直線方程
(1)過點P且過原點的直線方程;
(2)過點P且垂直于直線l3:x-2y-1=0的直線l的方程.

查看答案和解析>>

同步練習冊答案