【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線,直線l的參數(shù)方程為:為參數(shù)),直線l與曲線C分別交于M,N兩點.

1)寫出曲線C的直角坐標方程和直線l的普通方程;

2)若點,求的值.

【答案】1;;(2.

【解析】

1)將兩邊乘以,用代入,即可求出曲線直角坐標方程;參數(shù)方程用代入法消去參數(shù),可求得直線的普通方程;

2)直線化為過具有幾何意義的參數(shù)方程,代入曲線的方程,設兩點對應的參數(shù)分別為,,根據(jù)韋達定理,得出的關系式,結合參數(shù)幾何意義,將所求的量用,表示,即可求解.

解:⑴∵,則,

為曲線C直角坐標方程,

為參數(shù))

為直線l的普通方程.

⑵注意到在直線l上,直線傾斜角為,

,

解得直線l的參數(shù)方程化為 為參數(shù)),

代入得,, 恒成立,

M,N對應的參數(shù)分別為,,則 ,

不妨設,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線,橢圓分別為橢圓的左、右焦點.

(1)當直線過右焦點時,求橢圓的標準方程;

(2)設直線與橢圓交于兩點,為坐標原點,且,若點在以線段為直徑的圓內(nèi),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,底面為菱形, , , 相交于點,四邊形為直角梯形, , , ,平面底面.

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過點的直線CA,B兩點,拋物線C在點A處的切線與在點B處的切線交于點P

1)若直線的斜率為1,求;

2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),.

(1)當時,函數(shù)有兩個極值點,求的取值范圍;

(2)若在點處的切線與軸平行,且函數(shù)時,其圖象上每一點處切線的傾斜角均為銳角,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,討論函數(shù)的單調(diào)性;

2,時,對任意,,都有成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某生產(chǎn)基地有五臺機器,現(xiàn)有五項工作待完成,每臺機器完成每項工作后獲得的效益值如表所示.若每臺機器只完成一項工作,且完成五項工作后獲得的效益值總和最大,則下列敘述錯誤的的是_____________.

甲只能承擔第四項工作

乙不能承擔第二項工作

丙可以不承擔第三項工作

丁可以承擔第三項工作

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知、為大于3的整數(shù),將的立方體分割為個單位正方體,從一角的單位正方體起第層、第行、第列的單位正方體記為.求所有有序六元數(shù)組的個數(shù),使得一只螞蟻從出發(fā),經(jīng)過每個小正方體恰一次到達.(注)螞蟻可以從一個單位正方體爬到另一個與之有公共面的相鄰正方體.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,g(x)=,

(1)求f(x)的最小值;

(2)對任意,都有恒成立,求實數(shù)a的取值范圍;

(3)證明:對一切,都有成立.

查看答案和解析>>

同步練習冊答案