分析 已知兩等式左邊利用和差化積公式變形,相除表示出tan$\frac{α+β}{2}$,進(jìn)而表示出sec$\frac{α+β}{2}$,平方和表示出cos$\frac{α-β}{2}$,原式化簡后將各自的值代入計(jì)算即可求出值.
解答 解:由已知得,2sin$\frac{α+β}{2}$cos$\frac{α-β}{2}$=a①,2cos$\frac{α+β}{2}$cos$\frac{α-β}{2}$=b②,
由ab≠0,①÷②得:tan$\frac{α+β}{2}$=$\frac{a}$,
∴sec$\frac{α+β}{2}$=±$\frac{\sqrt{{a}^{2}+^{2}}}$,
①2+②2得:4(cos$\frac{α-β}{2}$)]2=a2+b2,
∴cos$\frac{α-β}{2}$=±$\frac{\sqrt{{a}^{2}+^{2}}}{2}$,
∵2cos$\frac{α}{2}$cos$\frac{β}{2}$=cos$\frac{α+β}{2}$+cos$\frac{α-β}{2}$,
∴tan$\frac{α}{2}$+tan$\frac{β}{2}$=$\frac{sin\frac{α+β}{2}}{cos\frac{α}{2}cos\frac{β}{2}}$=$\frac{sin\frac{α+β}{2}}{\frac{1}{2}(cos\frac{α+β}{2}+cos\frac{α-β}{2})}$=$\frac{2sin\frac{α+β}{2}}{cos\frac{α+β}{2}+cos\frac{α-β}{2}}$=$\frac{2tan\frac{α+β}{2}}{1+sec\frac{α+β}{2}cos\frac{α-β}{2}}$=$\frac{\frac{2a}}{1±\frac{\sqrt{{a}^{2}+^{2}}}×\frac{\sqrt{{a}^{2}+^{2}}}{2}}$=$\frac{4a}{2b±({a}^{2}+^{2})}$.
點(diǎn)評(píng) 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2015)<f(2013)e2 | B. | f(2015)=f(2013)e2 | C. | f(2015)>f(2013)e2 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com