分析 (1)已知a=1,ff′(x)=$\frac{(x-\sqrt{2})(x+\sqrt{2})}{x(x-2)}$,求解f(x)的單調(diào)區(qū)間,只需令f′(x)>0解出單調(diào)增區(qū)間,令f′(x)<0解出單調(diào)減區(qū)間.
(2)區(qū)間(0,1]上的最值問(wèn)題,通過(guò)導(dǎo)數(shù)得到單調(diào)性,結(jié)合極值點(diǎn)和端點(diǎn)的比較得到,確定待定量a的值.
解答 解:對(duì)函數(shù)求導(dǎo)得:f′(x)=$\frac{1}{x}$-$\frac{1}{2-x}$+a,定義域?yàn)椋?,2)
(1)當(dāng)a=1時(shí),f′(x)=$\frac{1}{x}$-$\frac{1}{2-x}$=$\frac{(x-\sqrt{2})(x+\sqrt{2})}{x(x-2)}$,令f′(x)=0,解得x=$\sqrt{2}$,
∴當(dāng)x∈(0,$\sqrt{2}$)時(shí),f′(x)>0,當(dāng)x∈($\sqrt{2}$,2)時(shí),f′(x)<0,
∴函數(shù)f(x)的增區(qū)間是$(0,\sqrt{2})$;減區(qū)間是$(\sqrt{2},2)$.
(2)當(dāng)$x∈(0,1],f'(x)=\frac{2-2x}{x(2-x)}+a>0$,即f(x)在(0,1]上為單調(diào)遞增.
最大值在右端點(diǎn)取到f(x)max=f(1)=a=2.
點(diǎn)評(píng) 本題考查了考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)處理函數(shù)最值等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
認(rèn)為就應(yīng)依法拆除 | 認(rèn)為太可惜了 | |
男 | 45 | 10 |
女 | 30 | 15 |
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
A. | 在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為“認(rèn)為拆除太可惜了與性別有關(guān)” | |
B. | 在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為“認(rèn)為拆除太可惜了與性別無(wú)關(guān)” | |
C. | 有90%以上的把握認(rèn)為“認(rèn)為拆除太可惜了與性別有關(guān)” | |
D. | 有90%以上的把握認(rèn)為“認(rèn)為拆除太可惜了與性別無(wú)關(guān)” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞) | B. | (-$\sqrt{3}$,$\sqrt{3}$) | C. | [-$\sqrt{3}$,$\sqrt{3}$] | D. | [-3,3] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com