【題目】已知函數(shù)(且)的零點(diǎn)是.
(1)設(shè)曲線在零點(diǎn)處的切線斜率分別為,判斷的單調(diào)性;
(2)設(shè)是的極值點(diǎn),求證:.
【答案】(1)在單調(diào)遞增,在遞減(2)見(jiàn)解析
【解析】
(1)先求出函數(shù)的零點(diǎn),,再利用導(dǎo)數(shù)的幾何意義可得關(guān)于的函數(shù),再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可;
(2)對(duì)函數(shù)進(jìn)行求導(dǎo)得,利用導(dǎo)數(shù)證明函數(shù),不妨設(shè),利用所證不等式,即可證得結(jié)論.
由題可知:函數(shù)的定義域?yàn)?/span>
(1)由,得,.
則,,
所以.
令.則,
所以當(dāng)時(shí),;當(dāng)時(shí),
故在單調(diào)遞增,在遞減.
(2),
又在,恒成立,
由題知為的極值點(diǎn),
所以且在單調(diào)遞減,在單調(diào)遞增,
故為的極小值點(diǎn).
令,
則
,
故,
因?yàn)?/span>,所以,所以在單調(diào)遞減,
所以
所以在單調(diào)遞減,所以
所以,
不妨設(shè),
所以,又在單調(diào)遞減,在單調(diào)遞增,
所以,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.
(1)求曲線C1的極坐標(biāo)方程以及曲線C2的直角坐標(biāo)方程;
(2)若直線l:y=kx與曲線C1、曲線C2在第一象限交于P、Q,且|OQ|=|PQ|,點(diǎn)M的直角坐標(biāo)為(1,0),求△PMQ的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中“勾股容方”問(wèn)題:“今有勾五步,股十二步,問(wèn)勾中容方幾何?”魏晉時(shí)期數(shù)學(xué)家劉徽在其《九章算術(shù)注》中利用出入相補(bǔ)原理給出了這個(gè)問(wèn)題的一般解法:如圖1,用對(duì)角線將長(zhǎng)和寬分別為和的矩形分成兩個(gè)直角三角形,每個(gè)直角三角形再分成一個(gè)內(nèi)接正方形(黃)和兩個(gè)小直角三角形(朱、青).將三種顏色的圖形進(jìn)行重組,得到如圖2所示的矩形.該矩形長(zhǎng)為,寬為內(nèi)接正方形的邊長(zhǎng).由劉徽構(gòu)造的圖形還可以得到許多重要的結(jié)論,如圖3.設(shè)為斜邊的中點(diǎn),作直角三角形的內(nèi)接正方形對(duì)角線,過(guò)點(diǎn)作于點(diǎn),則下列推理正確的是( )
①由圖1和圖2面積相等得;
②由可得;
③由可得;
④由可得.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),是函數(shù)的導(dǎo)數(shù).
(1)若是上的單調(diào)函數(shù),求的值;
(2)當(dāng)時(shí),求證:若,且,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的普通方程為:,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,正方形的頂點(diǎn)都在上,且逆時(shí)針依次排列,點(diǎn)的極坐標(biāo)為
(1)寫出曲線的參數(shù)方程,及點(diǎn)的直角坐標(biāo);
(2)設(shè)為橢圓上的任意一點(diǎn),求:的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十八大以來(lái),黨中央提出要在2020年實(shí)現(xiàn)全面脫貧,為了實(shí)現(xiàn)這一目標(biāo),國(guó)家對(duì)“新農(nóng)合”(新型農(nóng)村合作醫(yī)療)推出了新政,各級(jí)財(cái)政提高了對(duì)“新農(nóng)合”的補(bǔ)助標(biāo)準(zhǔn).提高了各項(xiàng)報(bào)銷的比例,其中門診報(bào)銷比例如下:
表1:新農(nóng)合門診報(bào)銷比例
醫(yī)院類別 | 村衛(wèi)生室 | 鎮(zhèn)衛(wèi)生院 | 二甲醫(yī)院 | 三甲醫(yī)院 |
門診報(bào)銷比例 | 60% | 40% | 30% | 20% |
根據(jù)以往的數(shù)據(jù)統(tǒng)計(jì),李村一個(gè)結(jié)算年度門診就診人次情況如下:
表2:李村一個(gè)結(jié)算年度門診就診情況統(tǒng)計(jì)表
醫(yī)院類別 | 村衛(wèi)生室 | 鎮(zhèn)衛(wèi)生院 | 二甲醫(yī)院 | 三甲醫(yī)院 |
一個(gè)結(jié)算年度內(nèi)各門診就診人次占李村總就診人次的比例 | 70% | 10% | 15% | 5% |
如果一個(gè)結(jié)算年度每人次到村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院門診平均費(fèi)用分別為50元、100元、200元、500元.若李村一個(gè)結(jié)算年度內(nèi)去門診就診人次為2000人次.
(Ⅰ)李村在這個(gè)結(jié)算年度內(nèi)去三甲醫(yī)院門診就診的人次中,60歲以上的人次占了80%,從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?
(Ⅱ)如果將李村這個(gè)結(jié)算年度內(nèi)門診就診人次占全村總就診人次的比例視為概率,求李村這個(gè)結(jié)算年度每人次用于門診實(shí)付費(fèi)用(報(bào)銷后個(gè)人應(yīng)承擔(dān)部分)的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)點(diǎn)是拋物線的焦點(diǎn),直線與拋物線相切于點(diǎn)(點(diǎn)位于第一象限),并與拋物線的準(zhǔn)線相交于點(diǎn).過(guò)點(diǎn)且與直線垂直的直線交拋物線于另一點(diǎn),交軸于點(diǎn),連結(jié).
(1)證明:為等腰三角形;
(2)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論中正確的個(gè)數(shù)是( )
①在中,“”是“”的必要不充分條件;
②若,的最小值為2;
③夾在圓柱的兩個(gè)平行截面間的幾何體是圓柱;
④數(shù)列的通項(xiàng)公式為,則數(shù)列的前項(xiàng)和.( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),對(duì)都有成立,當(dāng)且時(shí),有.則下列說(shuō)法正確的是( )
A.B.在上有5個(gè)零點(diǎn)
C.D.直線是函數(shù)圖象的一條對(duì)稱
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com