【題目】如圖,直三棱柱中,,,的中點,點為線段上的一點.

(1)若,求證:;

(2)若,異面直線所成的角為,求直線與平面所成角的正弦值.

【答案】(1)證明見解析;(2)

【解析】

(1) 根據(jù)三棱柱是直三棱柱的特征,又,可作中點,連接DM,通過線面垂直證明平面,可推出,又,可證

(2) 通過作圖,分別以,軸、軸、軸,建立空間直角體系,先通過幾何法求出長度,分別表示出線面角各點對應(yīng)的坐標(biāo),再用向量公式算出直線與平面所成角的正弦值

證明:(1)取中點,連接,,有,

因為,所以,

又因為三棱柱為直三棱柱,

所以平面平面,

又因為平面平面

所以平面,

又因為平面,

所以

又因為,平面平面,

所以平面,

又因為平面

所以,因為

所以.

(2)設(shè),如圖以為坐標(biāo)原點,

分別以,,軸、軸、軸,建立空間直角體系,

由(1)可知,,所以

,,,,

對平面,,

所以其法向量可表示為.

所以直線與平面成角的正弦值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險是車主必須為機(jī)動車購買的險種若普通座以下私家車投保交強(qiáng)險第一年的費用(基準(zhǔn)保費)統(tǒng)一為,在下一年續(xù)保時,實行的是費率浮動機(jī)制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表(其中浮動比率是在基準(zhǔn)保費上上下浮動):

交強(qiáng)險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責(zé)任道路交通事故

下浮

上兩個年度未發(fā)生有責(zé)任道路交通事故

下浮

上三個及以上年度未發(fā)生有責(zé)任道路交通事故

下浮

上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮

上一個年度發(fā)生有責(zé)任道路交通死亡事故

上浮

某機(jī)構(gòu)為了研究某一品牌普通座以下私家車的投保情況,隨機(jī)抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格

類型

數(shù)量

(Ⅰ)求這輛車普通座以下私家車在第四年續(xù)保時保費的平均值(精確到

(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險保費高于基準(zhǔn)保費的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損,一輛非事故車盈利,且各種投保類型車的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致.試完成下列問題:

①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在該店內(nèi)隨機(jī)挑選輛車,求這輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進(jìn)輛車車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1)解方程

2)令,求的值.

3)若是定義在上的奇函數(shù),且對任意恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是菱形,的中點,點在側(cè)棱上.

(1)求證:平面

(2)若的中點,求證:平面;

(3)若,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓上任意一點到兩焦點距離之和為,離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線的斜率為,直線與橢圓C交于兩點.點為橢圓上一點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體,底面ABFE是邊長為2的正方形,DECF均垂直于平面ABFE,且

1)證明:BE∥平面ACD;

2)求三棱錐BACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地有一企業(yè)2007年建廠并開始投資生產(chǎn),年份代號為7,2008年年份代號為8,依次類推.經(jīng)連續(xù)統(tǒng)計9年的收入情況如下表(經(jīng)數(shù)據(jù)分析可用線性回歸模型擬合的關(guān)系):

年份代號(

7

8

9

10

11

12

13

14

15

當(dāng)年收入(千萬元)

13

14

18

20

21

22

24

28

29

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)試預(yù)測2020年該企業(yè)的收入.

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在OAB中,頂點A的坐標(biāo)是(3,0),頂點B的坐標(biāo)是(1,2),記OAB位于直線左側(cè)圖形的面積為f(t)

1)求函數(shù)f(t)的解析式;

2)設(shè)函數(shù),求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中,

(1)當(dāng)時,討論函數(shù)的單調(diào)性;

(2)若函數(shù)僅在處有極值,求的取值范圍;

(3)若對于任意的,不等式上恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案