【題目】如圖,在△OAB中,頂點A的坐標(biāo)是(3,0),頂點B的坐標(biāo)是(1,2),記△OAB位于直線左側(cè)圖形的面積為f(t).
(1)求函數(shù)f(t)的解析式;
(2)設(shè)函數(shù),求函數(shù)的最大值.
【答案】(1);(2).
【解析】
(1)直線在B點左側(cè)時陰影部分是直角三角形,面積易求,直線在B點右側(cè)時陰影部分是四邊形,其面積可用面積減去直線右側(cè)的三角形面積.
(2)由(1)得,可分類研究函數(shù)的最大值,然后得函數(shù)的最大值.
(1)∵ A的坐標(biāo)是(3,0),B的坐標(biāo)是(1,2),
易得直線OB的解析式為y=2x,直線AB的解析式為y=3-x.
當(dāng)0<t≤1時,;
當(dāng)1<t<3時,;
綜上得,
(2)由(1)得
當(dāng)0<t≤1時,,;
當(dāng)1<t<3時,,;
綜上可知:t=2時,函數(shù)取得最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線: 的左、右焦點分別為, 為坐標(biāo)原點, 是雙曲線上在第一象限內(nèi)的點,直線分別交雙曲線左、右支于另一點, ,且,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,,,,為的中點,點為線段上的一點.
(1)若,求證:;
(2)若,異面直線與所成的角為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 與定點, 為圓上的動點,點在線段上,且滿足.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)設(shè)曲線與軸正半軸交點為,不經(jīng)過點的直線與曲線相交于不同兩點, ,若.證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃在報刊與網(wǎng)絡(luò)媒體上共投放30萬元的廣告費,根據(jù)計劃,報刊與網(wǎng)絡(luò)媒體至少要投資4萬元.根據(jù)市場前期調(diào)研可知,在報刊上投放廣告的收益與廣告費滿足,在網(wǎng)絡(luò)媒體上投放廣告的收益與廣告費滿足,設(shè)在報刊上投放的廣告費為(單位:萬元),總收益為(單位:萬元).
(1)當(dāng)在報刊上投放的廣告費是18萬元時,求此時公司總收益;
(2)試問如何安排報刊、網(wǎng)絡(luò)媒體的廣告投資費,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國年新年賀歲大片《流浪地球》自上映以來引發(fā)了社會的廣泛關(guān)注,受到了觀眾的普遍好評.假設(shè)男性觀眾認(rèn)為《流浪地球》好看的概率為,女性觀眾認(rèn)為《流浪地球》好看的概率為.某機構(gòu)就《流浪地球》是否好看的問題隨機采訪了名觀眾(其中男女).
(1)求這名觀眾中女性認(rèn)為好看的人數(shù)比男性認(rèn)為好看的人數(shù)多的概率;
(2)設(shè)表示這名觀眾中認(rèn)為《流浪地球》好看的人數(shù),求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,,集合,且集合滿足,.
(1)求實數(shù)的值;
(2)對集合,其中,定義由中的元素構(gòu)成兩個相應(yīng)的集合:,,其中是有序數(shù)對,集合和中的元素個數(shù)分別為和,若對任意的,總有,則稱集合具有性質(zhì).
①請檢驗集合與是否具有性質(zhì),并對其中具有性質(zhì)的集合,寫出相應(yīng)的集合和;
②試判斷和的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域為().
(1)當(dāng)時,求函數(shù)的值域;
(2)若函數(shù)在定義域上是減函數(shù),求的取值范圍;
(3)求函數(shù)在定義域上的最大值及最小值,并求出函數(shù)取最值時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為常數(shù)
(1)當(dāng)在處取得極值時,若關(guān)于x的方程 在上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍.
(2)若對任意的,總存在,使不等式 成立,求實數(shù) 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com