精英家教網 > 高中數學 > 題目詳情

【題目】在橢圓上任取一點不為長軸端點),連結,并延長與橢圓分別交于點兩點,已知的周長為8,面積的最大值為.

1)求橢圓的方程;

2)設坐標原點為,當不是橢圓的頂點時,直線和直線的斜率之積是否為定值?若是定值,請求出這個定值;若不是定值,請說明理由.

【答案】1;(2)是定值,值為.

【解析】

(1)根據橢圓的定義,結合的周長為8,求出的值,設出點的坐標,結合三角形面積公式,橢圓的范圍,面積的最大值為.可以求出的關系,進而求出的值,最后求出橢圓的方程;

(2)設出直線的方程與橢圓方程聯(lián)立,利用解方程組,求出點坐標,同理求出的坐標,最后通過斜率公式,計算出直線和直線的斜率之積是定值.

(1)因為的周長為8,所以有

,因為面積的最大值為.所以的最大值為,由橢圓的范圍,當時,面積最大,因此有,而,因為,所以,所以橢圓標準方程為:;

2)當不是橢圓的頂點時,因此.

直線的方程為:,與橢圓的方程聯(lián)立,得:

,

,

同理直線的方程為:,與橢圓的方程聯(lián)立,得:

,

為定值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,矩形是某生態(tài)農莊的一塊植物栽培基地的平面圖,現(xiàn)欲修一條筆直的小路(寬度不計)經過該矩形區(qū)域,其中都在矩形的邊界上.已知,(單位:百米),小路將矩形分成面積分別為,(單位:平方百米)的兩部分,其中,且點在面積為的區(qū)域內,記小路的長為百米.

1)若,求的最大值;

2)若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年上半年我國多個省市暴發(fā)了非洲豬瘟疫情,生豬大量病死,存欄量急劇下降,一時間豬肉價格暴漲,其他肉類價格也跟著大幅上揚,嚴重影響了居民的生活.為了解決這個問題,我國政府一方面鼓勵有條件的企業(yè)和散戶防控疫情,擴大生產;另一方面積極向多個國家開放豬肉進口,擴大肉源,確保市場供給穩(wěn)定.某大型生豬生產企業(yè)分析當前市場形勢,決定響應政府號召,擴大生產決策層調閱了該企業(yè)過去生產相關數據,就一天中一頭豬的平均成本與生豬存欄數量之間的關系進行研究.現(xiàn)相關數據統(tǒng)計如下表:

生豬存欄數量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究員甲根據以上數據認為具有線性回歸關系,請幫他求出關于的線.性回歸方程(保留小數點后兩位有效數字)

2)研究員乙根據以上數據得出的回歸模型:.為了評價兩種模型的擬合效果,請完成以下任務:

①完成下表(計算結果精確到0.01元)(備注:稱為相應于點的殘差);

生豬存欄數量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估計值

殘差

模型乙

估計值

3.2

2.4

2

1.76

1.4

殘差

0

0

0

0.14

0.1

②分別計算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個模型擬合效果更好.

3)根據市場調查,生豬存欄數量達到1萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數量達到1.2萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計算一天中一頭豬的平均成本,問該生豬存欄數量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)

參考公式:.

參考數據:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了調查中學生每天玩游戲的時間是否與性別有關,隨機抽取了男、女學生各50人進行調查,根據其日均玩游戲的時間繪制了如下的頻率分布直方圖.

1)求所調查學生日均玩游戲時間在分鐘的人數;

2)將日均玩游戲時間不低于60分鐘的學生稱為“游戲迷”,已知“游戲迷”中女生有6人;

①根據已知條件,完成下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“游戲迷”和性別關系;

非游戲迷

游戲迷

合計

合計

②在所抽取的“游戲迷”中按照分層抽樣的方法抽取10人,再在這10人中任取9人進行心理干預,求這9人中男生全被抽中的概率.

附:(其中為樣本容量).

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知的兩個頂點的坐標分別為,且所在直線的斜率之積等于,記頂點的軌跡為.

Ⅰ)求頂點的軌跡的方程;

Ⅱ)若直線與曲線交于兩點,點在曲線上,且的重心(為坐標原點),求證:的面積為定值,并求出該定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數(其中是常數,且),曲線處的切線方程為.

1)求的值;

2)若存在(其中是自然對數的底),使得成立,求的取值范圍;

3)設,若對任意,均存在,使得方程有三個不同的實數解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為等差數列,為等比數列,公比為..

1)若.

①當,求數列的通項公式;

②設,,試比較的大小?并證明你的結論.

2)問集合中最多有多少個元素?并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在邊長為3的正方形ABCD中,點E,F分別在邊ABBC(如圖1),且BE=BF,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于點A′(如圖2).

1)求證ADEF

2BFBC時,求點A到平面DEF的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,兩兩垂直,四邊形是邊長為2的正方形,,且.

1)證明:平面平面;

2)求點到平面的距離.

查看答案和解析>>

同步練習冊答案