如圖,若正方體ABCD-A1B1C1D1的棱長為1,則點C到平面A1BD的距離為______.
構造三棱錐C-A1DB,并且有Vc-A1BD=VA1-BCD,
因為VA1-BCD=
1
3
sh=
1
3
×
1
2
×1×1×1
=
1
6
,
所以Vc-A1BD=
1
6

設點C到平面A1BD的距離為x,
又因為Vc-A1BD=
1
3
×SA1BD×x=
3
x
6
=
1
6

所以x=
3
3
,即點C到平面A1BD的距離為
3
3

故答案為
3
3
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

正方形ABCD的邊長為a,MA⊥平面ABCD,且MA=a,試求:
(1)點M到BD的距離;
(2)AD到平面MBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,求點P到BC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,棱柱ABC-A1B1C1中,四邊形AA1B1B是菱形,四邊形BCC1B1是矩形,AB⊥BC,CB=1,AB=2,∠A1AB=60°.
(1)求證:平面CA1B⊥平面A1ABB1;
(2)求B1C1到平面A1CB的距離;
(3)求直線A1C與平面BCC1B1所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知矩形的周長為36,矩形繞它的一條邊旋轉形成一個圓柱,要使旋轉形成的圓柱的側面積最大,則矩形的長為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

空間四邊形ABCD的各邊與兩條對角線的長都是1,點P在邊AB上移動,點Q在CD上移動,則點P與Q的最短距離為(  )
A.
1
2
B.
2
2
C.
3
4
D.
3
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以下四個結論:
①若a?α,b?β,則a,b為異面直線;
②若a?α,b?α,則a,b為異面直線;
③沒有公共點的兩條直線是平行直線;
④兩條不平行的直線就一定相交.
其中正確答案的個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1中,D、E分別是棱BC、AB的中點,點F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.
(1)求證:C1E平面ADF;
(2)若點M在棱BB1上,當BM為何值時,平面CAM⊥平面ADF?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側面PAB是正三角形,平面PAB⊥平面ABCD,E是棱PA的中點.
(1)求證:PC平面EBD;
(2)求三棱錐P-EBD的體積.

查看答案和解析>>

同步練習冊答案