若圓柱的底面半徑為1cm,母線長為2cm,則圓柱的側面積為
 
cm2
考點:旋轉體(圓柱、圓錐、圓臺)
專題:空間位置關系與距離
分析:根據已知中圓柱的底面半徑為1cm,母線長為2cm,代入圓柱側面積公式,可得答案.
解答: 解:∵圓柱的底面半徑為r=1cm,母線長為l=2cm,
∴圓柱的側面積S=2πrl=4πcm2,
故答案為:4π
點評:本題考查的知識點是圓柱的側面積公式,難度不大,直接代入運算即可,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知兩定點A(2,5),B(-2,1),直線y=x上兩動點M,N,且|MN|=2
2
,如果直線AM與BN的交點正好落在y軸上,求M,N的坐標以及兩直線AM與BN的交點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求凼數(shù)y=(sinx+a)(cosx+a)(0<a≤
2
)的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=ex
(Ⅰ)求函數(shù)y=f(x)-x的單調區(qū)間;
(Ⅱ)若不等式g(x)<
x-m
x
在(0.+∞)上有解,求實數(shù)m的取值范圍;
(Ⅲ)證明:函數(shù)y=f(x)和y=g(x)在公共定義域內,g(x)-f(x)>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知常數(shù)α>0,β>0,函數(shù)f(x)=
α+βln(1+x)
x
,且函數(shù)f(x)在區(qū)間[e-1,e2-1]上滿足
3
e+1
≤(e-1)f(x)≤2.
(1)求常數(shù)α,β 值;
(2)設函數(shù)g(x)=
k
1+x
,求最大的正整數(shù)k,使得對任意的正數(shù)c,存在實數(shù)a,b滿足-1<a<b<c,且f(c)=f(a)=g(b).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知拋物線y2=2px(p>0)的準線方程為 x=-
1
4
,過點M(0,-2)作拋物線的切線MA,切點為A(異于點O).直線l過點M與拋物線交于兩點B,C,與直線OA交于點N.
(1)求拋物線的方程;
(2)試問:
MN
MB
+
MN
MC
的值是否為定值?若是,求出定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,記曲線y=2x-
m
x
.(m∈R,m≠-2)在x=1處的切線為直線l,若直線l在兩坐標軸上的截距之和為12,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果實數(shù)x,y滿足等式(x-2)2+y2=3,那么
y
x
的最大值是(  )
A、
3
B、
3
2
C、
3
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體的內切球的體積為36π,則此正方體的表面積是(V球體=
4
3
πR3
(R為球的半徑))( 。
A、216B、72
C、108D、648

查看答案和解析>>

同步練習冊答案