設(shè)函數(shù),
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最值.

(Ⅰ)的單調(diào)遞增區(qū)間為, 單調(diào)遞減區(qū)間為;(Ⅱ)函數(shù)在區(qū)間上的最大值為 ,最小值為 .

解析試題分析:(Ⅰ)求函數(shù)的單調(diào)區(qū)間,它的解題方法有兩種:一是利用定義,二是導(dǎo)數(shù)法,本題由于是三次函數(shù),可用導(dǎo)數(shù)法求單調(diào)區(qū)間,只需求出的導(dǎo)函數(shù),判斷的導(dǎo)函數(shù)的符號(hào),從而求出的單調(diào)區(qū)間;(Ⅱ)求函數(shù)在區(qū)間上的最值,求在區(qū)間上的最大值,此題屬于函數(shù)在閉區(qū)間上的最值問(wèn)題,解此類(lèi)題,只需求出極值,與端點(diǎn)處的函數(shù)值,比較誰(shuí)大,就取誰(shuí),本題比較簡(jiǎn)單,屬于送分題.
試題解析:(Ⅰ) ,  令    
的變化情況如下表:









0

0


單調(diào)遞增
極大值
單調(diào)遞減
極小值
單調(diào)遞增
由上表可知的單調(diào)遞增區(qū)間為, 單調(diào)遞減區(qū)間為
(Ⅱ)由(Ⅰ)可知函數(shù) 在 上單調(diào)遞增,在 上單調(diào)遞減,在 上單調(diào)遞增, 的極大值  , 的極小值  

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(I)求的單調(diào)區(qū)間;
(II)設(shè),若上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對(duì)于任意恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)令若至少存在一個(gè)實(shí)數(shù),使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)時(shí),求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)若時(shí),求的單調(diào)區(qū)間;
(Ⅱ)時(shí),有極值,且對(duì)任意時(shí),求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)如果對(duì)于任意的,總成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),,過(guò)點(diǎn)作函數(shù)圖象的所有切線,令各切點(diǎn)得橫坐標(biāo)構(gòu)成數(shù)列,求數(shù)列的所有項(xiàng)之和的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) .
(1)若.
(2)若函數(shù)上是增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè) 
(1)如果處取得最小值,求的解析式;
(2)如果的單調(diào)遞減區(qū)間的長(zhǎng)度是正整數(shù),試求的值.(注:區(qū)間的長(zhǎng)度為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若,求的極大值;
(Ⅱ)若在定義域內(nèi)單調(diào)遞減,求滿(mǎn)足此條件的實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案