分析 設|AF|=a,|BF|=b,連接AF、BF.由拋物線定義得2|$\overrightarrow{MN}$|=a+b,由余弦定理可得|$\overrightarrow{AB}$|2=(a+b)2-3ab,進而根據基本不等式,求得|$\overrightarrow{AB}$|的取值范圍,從而得到本題答案
解答 解:設|AF|=a,|BF|=b,
由拋物線定義,得|AF|=|AQ|,|BF|=|BP|
在梯形ABPQ中,∴2|$\overrightarrow{MN}$|=|AQ|+|BP|=a+b.
由余弦定理得,
|$\overrightarrow{AB}$|2=a2+b2-2abcos90°=a2+b2,
配方得,|$\overrightarrow{AB}$|2=(a+b)2-2ab,
又∵ab≤($\frac{a+b}{2}$) 2,
∴(a+b)2-2ab≥(a+b)2-$\frac{1}{2}$(a+b)2=$\frac{1}{2}$(a+b)2
得到|$\overrightarrow{AB}$|≥$\frac{\sqrt{2}}{2}$(a+b).
∴$\frac{{|{\overrightarrow{MN}}|}}{{|{\overrightarrow{AB}}|}}$≤$\frac{\sqrt{2}}{2}$,即$\frac{{|{\overrightarrow{MN}}|}}{{|{\overrightarrow{AB}}|}}$的最大值為$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$
點評 本題在拋物線中,利用定義和余弦定理求$\frac{{|{\overrightarrow{MN}}|}}{{|{\overrightarrow{AB}}|}}$的最大值,著重考查拋物線的定義和簡單幾何性質、基本不等式求最值和余弦定理的應用等知識,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com