4.已知直線經(jīng)過點(diǎn)P(1,2),且與直線y=2x+3平行,則該直線方程為y=2x.

分析 設(shè)所求直線的方程為y=2x+b,將P點(diǎn)代入求出b值,可得答案.

解答 解:∵所求直線與直線y=2x+3平行,
∴設(shè)所求直線的方程為y=2x+b,
∵直線經(jīng)過點(diǎn)P(1,2),
∴2=2+b,解得:b=0,
故所求直線的方程為:y=2x;
故答案為:y=2x

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是待定系數(shù)法求直線方程,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓C:x2+y2-4x-14y+45=0及點(diǎn)Q(-2,3).
(1)若M為圓C上任一點(diǎn),求|MQ|的最大值和最小值;
(2)若實(shí)數(shù)m,n滿足m2+n2-4m-14n+45=0,求k=$\frac{n-3}{m+2}$的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\overrightarrow{OP}=(-8m,-6cos\frac{π}{3})$與單位向量(1,0)所成的角為θ,且$cosθ=-\frac{4}{5}$,則m的值為(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.定義在R上的偶函數(shù)f(x)滿足:對(duì)于任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,則當(dāng)n∈N*時(shí),有( 。
A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知A(x,-2),B(3,0),若直線AB的斜率為2,則x的值為( 。
A.-1B.2C.-1或2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.拋物線y2=2px(p>0)的焦點(diǎn)為F,已知點(diǎn)A,B為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足∠AFB=90°,過弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則$\frac{{|{\overrightarrow{MN}}|}}{{|{\overrightarrow{AB}}|}}$的最大值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-2|+|x+a|.
(1)若a=1,解不等式 f(x)≤2|x-2|;
(2)若f(x)≥2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x∈N*|-2<x≤2},B={y|y=2x,x∈A}|,C={z|z=1+log2y,y∈B},則A∩C=( 。
A.{1,2}B.{2}C.{2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ex(ax2+bx+c)的導(dǎo)函數(shù)y=f′(x)的兩個(gè)零點(diǎn)為-3和0.(其中e=2.71828…)
(Ⅰ)當(dāng)a>0時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)的極小值為-e3,求f(x)在區(qū)間[-5,1]上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案