函數(shù).
(1)若在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)若,若函數(shù)在 [1,3]上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.
(1);(2)2-2ln2<k3-2ln3
解析試題分析:(1)由當(dāng)a=-2時(shí),函數(shù)h(x)在其定義域(0,)內(nèi)是增函數(shù),可得恒成立,從而通過分離參數(shù)轉(zhuǎn)化為求函數(shù)的最小值處理.
(2)函數(shù)在[1,3]上恰有兩個(gè)不同的零點(diǎn)等價(jià)于方程 =,在[1,3]上恰有兩個(gè)相異實(shí)根; 等價(jià)于函數(shù)的圖象與直線有兩個(gè)不同的交點(diǎn),利用函數(shù)的導(dǎo)數(shù)求出函數(shù)的單調(diào)區(qū)間與極值,就可畫出的大致圖象,通過圖象觀查可知從而求得k的取值范圍.
試題解析:(1),則:
恒成立, ,
(當(dāng)且僅當(dāng)時(shí),即時(shí),取等號(hào)),
(2)函數(shù)在[1,3]上恰有兩個(gè)不同的零點(diǎn)等價(jià)于方程 =,在[1,3]上恰有兩個(gè)相異實(shí)根.
令則 ;當(dāng),;當(dāng)時(shí),;所以在[1,2]上是單調(diào)遞減函數(shù),在(2,3]上是單調(diào)遞增函數(shù);故,又如圖,故只需,所以有:2-2ln2<k3-2ln3
考點(diǎn):1.由函數(shù)單調(diào)性求參數(shù)的取值范圍;2.函數(shù)圖象與零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)m為何值時(shí),f(x)=x2+2mx+3m+4.
①有且僅有一個(gè)零點(diǎn);②有兩個(gè)零點(diǎn)且均比-1大;
(2)若函數(shù)f(x)=|4x-x2|+a有4個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/83/8/1kueu4.png" style="vertical-align:middle;" />,.
(1)求集合;
(2)若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已函數(shù)是定義在上的奇函數(shù),在上.
(1)求函數(shù)的解析式;并判斷在上的單調(diào)性(不要求證明);
(2)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是上的增函數(shù),
(1)若,且,求證
(2)判斷(1)中命題的逆命題是否成立,并證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com