已知點(diǎn),若直線與線段有公共點(diǎn),則斜率的取值范圍是               

 

【答案】

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)訄A過定點(diǎn)A(4,0),且在y軸上截得的弦MN的長為8.
(1)求動(dòng)圓圓心的軌跡C的方程;
(2)若軌跡C與圓M:(x-5)2+y2=r2(r>0)相交于A、B、C、D四個(gè)點(diǎn),求r的取值范圍;
(3)已知點(diǎn)B(-1,0),設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一條雙曲線
x2
4
-y2=1
的左、右頂點(diǎn)分別為A1,A2,點(diǎn)M(x1,y1),N(x1,-y1)是雙曲線上不同的兩個(gè)動(dòng)點(diǎn).
(1)求直線A1M與A2N交點(diǎn)的軌跡E的方程式;
(2)設(shè)直線l與曲線E相交于不同的兩點(diǎn)A,B,已知點(diǎn)A的坐標(biāo)為(-2,0),若點(diǎn)Q(0,y0)在線段AB的垂直平分線上,且
QA
QB
=4
.求y0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城一模)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(diǎn)M(3
2
,
2
),橢圓的離心率e=
2
2
3
,F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn).
(1)求橢圓C的方程;
(2)過點(diǎn)M作兩直線與橢圓C分別交于相異兩點(diǎn)A、B.
①若直線MA過坐標(biāo)原點(diǎn)O,試求△MAF2外接圓的方程;
②若∠AMB的平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請(qǐng)給予證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•陜西)已知?jiǎng)訄A過定點(diǎn)A(4,0),且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動(dòng)圓圓心的軌跡C的方程;
(Ⅱ) 已知點(diǎn)B(-1,0),設(shè)不垂直于x軸的直線與軌跡C交于不同的兩點(diǎn)P,Q,若x軸是∠PBQ的角平分線,證明直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知點(diǎn)A(1,0),點(diǎn)B在直線l:x=-1上運(yùn)動(dòng),過點(diǎn)B與l垂直的直線和線段AB的垂直平分線相交于點(diǎn)M.
(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)過(1)中的軌跡E上的定點(diǎn)P(x0,y0)(y0>0)作兩條直線分別與軌跡E相交于C(x1,y1),D(x2,y2)兩點(diǎn).試探究:當(dāng)直線PC,PD的斜率存在且傾斜角互補(bǔ)時(shí),直線CD的斜率是否為定值?若是,求出這個(gè)定值;若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案