已知函數(shù)是奇函數(shù).
(Ⅰ)求a,c的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.
解:(Ⅰ)因?yàn)楹瘮?shù)g(x)=f(x)-2為奇函數(shù),
所以,對任意的x∈R, g(-x)=-g(x),即f(-x)- 2=-f(x)+2.
又f(x)=x3+ax2+3bx+c,
所以-x3+ax2-3bx+c-2=-x3-ax2-3bx-c+2.
所以
解得a=0,c=2.
(Ⅱ)由(Ⅰ)得f(x)=x3+3bx+2.
所以f′(x)=3x2+3b(b≠0).
當(dāng)b<0時(shí),由f′(x)=0得x=±
x變化時(shí),f′(x)的變化情況如下表:
x | (-∞,- ) | - | (-,) |
| (,+∞) |
f′(x) | + | 0 | - | 0 | + |
所以,當(dāng)b<0時(shí),函數(shù)f (x)在(-∞,-)上單調(diào)遞增,
在(-,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增.
當(dāng)b>0時(shí),f′(x)>0,所以函數(shù)f (x)在(-∞,+∞)上單調(diào)遞增.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x+1 |
x-1 |
x+1 |
x-1 |
x+1 |
x-1 |
m |
(x-1)2(7-x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省四地六校高三上學(xué)期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù) 是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù) 是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)求函數(shù)的值域
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com