【題目】高血壓高血糖和高血脂統(tǒng)稱“三高”.如圖是西南某地區(qū)從2010年至2016年患“三高”人數(shù)y(單位:千人)的折線圖.

1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請求出相關(guān)系數(shù)(精確到0.01)并加以說明;

2)建立關(guān)于的回歸方程,預(yù)測2018年該地區(qū)患“三高”的人數(shù).

參考數(shù)據(jù):,,.參考公式:相關(guān)系數(shù) 回歸方程 中斜率和截距的最小二乘法估計公式分別為:.

【答案】1)相關(guān)系數(shù),說明見解析.(2,千人

【解析】

1)計算出,由所給數(shù)據(jù)和公式可計算出相關(guān)系數(shù)

(2)計算出,,再由公式可得回歸方程的系數(shù),得回歸方程,令代入可得估計值.

1)由折線圖中數(shù)據(jù)和附注中參考數(shù)據(jù)得

,,

,

.

因為的相關(guān)系數(shù)近似為,說明的線性相關(guān)程度相當(dāng)高,從而可以用線性回歸模型擬合的關(guān)系.

2)根據(jù)題意結(jié)合(1)得,,,,

從而,

所求回歸方程為. 將2018年對應(yīng)的代入回歸方程得:.

所以預(yù)測2018年該地區(qū)患“三高”的人數(shù)將約為千人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年8月18日,舉世矚目的第18屆亞運會在印尼首都雅加達舉行,為了豐富亞運會志愿者的業(yè)余生活,同時鼓勵更多的有志青年加入志愿者行列,大會主辦方?jīng)Q定對150名志愿者組織一次有關(guān)體育運動的知識競賽(滿分120分)并計劃對成績前15名的志愿者進行獎勵,現(xiàn)將所有志愿者的競賽成績制成頻率分布直方圖,如圖所示,若第三組與第五組的頻數(shù)之和是第二組的頻數(shù)的3倍,試回答以下問題:

(1)求圖中的值;

(2)求志愿者知識競賽的平均成績;

(3)從受獎勵的15人中按成績利用分層抽樣抽取5人,再從抽取的5人中,隨機抽取2人在主會場服務(wù),求抽取的這2人中其中一人成績在分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,右焦點到右準(zhǔn)線的距離為3.(橢圓的右準(zhǔn)線方程為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)過的直線與橢圓相交于兩點.已知被圓截得的弦長為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的底面為正三角形,頂點在底面上的射影為底面的中心,分別是棱,的中點,且,若側(cè)棱,則三棱錐的外接球的表面積是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為直線與曲線交于兩點.

(1)求直線l的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點的極坐標(biāo)為,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)已知點為拋物線的焦點,點在拋物線上,且

)求拋物線的方程;

)已知點,延長交拋物線于點,證明:以點為圓心且與直線相切的圓,必與直線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為為參數(shù),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

1求圓C的普通方程和直線l的直角坐標(biāo)方程;

2設(shè)M是直線l上任意一點,過M做圓C切線,切點為AB,求四邊形AMBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將四個編號為1,2,3,4的相同小球放入編號為1,2,3,4的四個盒子中,

1)若每個盒子放一個小球,求有多少種放法;

2)若每個盒子放一球,求恰有1個盒子的號碼與小球的號碼相同的放法種數(shù);

3)求恰有一個空盒子的放法種數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車已經(jīng)悄然進入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務(wù)民眾,某共享單車公司在其官方中設(shè)置了用戶評價反饋系統(tǒng),以了解用戶對車輛狀況和優(yōu)惠活動的評價.現(xiàn)從評價系統(tǒng)中選出條較為詳細的評價信息進行統(tǒng)計,車輛狀況的優(yōu)惠活動評價的列聯(lián)表如下:

對優(yōu)惠活動好評

對優(yōu)惠活動不滿意

合計

對車輛狀況好評

對車輛狀況不滿意

合計

(1)能否在犯錯誤的概率不超過的前提下認為優(yōu)惠活動好評與車輛狀況好評之間有關(guān)系?

(2)為了回饋用戶,公司通過向用戶隨機派送每張面額為元,元,元的 三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得元券,獲得元券的概率分別是,,且各次獲取騎行券的結(jié)果相互獨立.若某用戶一天使用了兩次該公司的共享單車,記該用戶當(dāng)天獲得的騎行券面額之和為,求隨機變量的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù):

參考公式:,其中.

查看答案和解析>>

同步練習(xí)冊答案