【題目】已知橢圓E: + =1(a>b>0)的離心率e= ,并且經(jīng)過定點P( , ). (Ⅰ)求橢圓E的方程;
(Ⅱ)問是否存在直線y=﹣x+m,使直線與橢圓交于A、B兩點,滿足 = ,若存在求m值,若不存在說明理由.

【答案】解(Ⅰ)由題意: ,又c2=a2﹣b2解得:a2=4,b2=1,即:橢圓E的方程為 (1)
(Ⅱ)設A(x1 , y1),B(x2 , y2
(*)
所以
=
,

又方程(*)要有兩個不等實根,
所以m=±2
【解析】(Ⅰ)由已知條件推導出 ,由此能求出橢圓E的方程.(Ⅱ)設A(x1 , y1),B(x2 , y2),由 = 得,x1x2+y1y2= ,聯(lián)立方程組利用根與系數(shù)的關(guān)系求解即可得出m的值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】[2019·武漢六中]袋子中有四個小球,分別寫有“武、漢、軍、運”四個字,從中任取一個小球,有放回抽取,直到取到“軍”“運”二字就停止,用隨機模擬的方法估計恰好在第三次停止的概率:利用電腦隨機產(chǎn)生0到3之間取整數(shù)值的隨機數(shù),分別用0,1,2,3代表“軍、運、武、漢”這四個字,以每三個隨機數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下16組隨機數(shù):

232 321 230 023 123 021 132 220

231 130 133 231 331 320 122 233

由此可以估計,恰好第三次就停止的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在R上的奇函數(shù),且x≥0時有

(1)寫出函數(shù)的單調(diào)區(qū)間(不要證明);

(2)解不等式;

(3)求函數(shù)在[﹣m,m]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于曲線(其中為自然對數(shù)的底數(shù))上任意一點處的切線,總存在在曲線上一點處的切線,使得,則實數(shù)的取值范圍是____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x=4n+1,n∈Z}B={x|x=4n﹣3,n∈z},C={x|x=8n+1,n∈z},則A,B,C的關(guān)系是(
A.C是B的真子集、B是A的真子集
B.A是B的真子集、B是C的真子集
C.C是A的真子集、A=B
D.A=B=C

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某大學自主招生考試中,所有選報Ⅱ類志向的考生全部參加了“數(shù)學與邏輯”和“閱讀與表達”兩個科目的考試,成績分為A,B,C,D,E五個等級.某考場考生的兩科考試成績的數(shù)據(jù)統(tǒng)計如圖所示,其中“數(shù)學與邏輯”科目的成績?yōu)锽的考生有10人.
(Ⅰ)求該考場考生中“閱讀與表達”科目中成績?yōu)锳的人數(shù);
(Ⅱ)若等級A,B,C,D,E分別對應5分,4分,3分,2分,1分,求該考場考生“數(shù)學與邏輯”科目的平均分;
(Ⅲ)已知參加本考場測試的考生中,恰有兩人的兩科成績均為A.在至少一科成績?yōu)锳的考生中,隨機抽取兩人進行訪談,求這兩人的兩科成績均為A的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和為Sn , 且Sn=3﹣ an , bn是an與an+1的等差中項,則數(shù)列{bn}的通項公式為(
A.4×3n
B.4×( n
C. ×( n1
D. ×( n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其指標值來衡量,其指標值越大表明質(zhì)量越好,且指標值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品,現(xiàn)用兩種新配方(分別稱為A配方和B配方)做試驗,各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的指標值,得到了下面的試驗結(jié)果: A配方的頻數(shù)分布表

指標值分組

[90,94)

[94,98)

[98,102)

[102,106)

[106,110]

頻數(shù)

8

20

42

22

8

B配方的頻數(shù)分布表

指標值分組

[90,94)

[94,98)

[98,102)

[102,106)

[106,110]

頻數(shù)

4

12

42

32

10


(1)分別估計用A配方,B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(2)已知用B配方生產(chǎn)的一件產(chǎn)品的利潤y(單位:元)與其指標值t的關(guān)系式為y= ,估計用B配方生產(chǎn)的一件產(chǎn)品的利潤大于0的概率,并求用B配方生產(chǎn)的上述產(chǎn)品平均每件的利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知平面直角坐標中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為,參數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系.

(1)若,求直線以及曲線的極坐標方程;

(2)已知,,,均在曲線上,且四邊形為矩形為矩形,求其周長的最大值.

查看答案和解析>>

同步練習冊答案