夾在的二面角內(nèi)的一個球與二面角的兩個面的切點到棱的距離都是6,則這個球的半徑為_______.

;

解析試題分析:結(jié)合截面圖形分析知,在直角三角形OMA中,OM=6,,所以這個球的半徑為。

考點:本題主要考查球面距離及相關計算。
點評:解題的關鍵是根據(jù)二面角與球的位置關系得出過兩切點的兩個半徑的夾角以及球面上兩點距離的公式,本題考查了空間想像能力,能根據(jù)題設條件想像出兩個幾何體的位置關系且判斷出夾角是解題成功的保證.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

一個正方體的六個面上分別標有A,B,C,D,E,F,下圖是正方體的兩種不同放置,則與D面相對的面上的字母是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,二面角的大小是60°,線段.,AB與所成的角為30°.則AB與平面所成的角的正弦值是  .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知直線m,n與平面α,β,給出下列三個命題:
①若m∥α,n∥α,則m∥n;
②若m∥α,n⊥α,則n⊥m;
③若m⊥α,m∥β,則α⊥β.
其中真命題的個數(shù)是______個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

是兩條直線,是兩個平面,則的一個充分條件是 (     )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知a、b是兩條不同的直線,a、b是兩個不同的平面,在下列命題
① ;②;③;④ 
中,正確的命題是          (只填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

有三個平面,β,γ,給出下列命題:
①若,β,γ兩兩相交,則有三條交線     ②若⊥β,⊥γ,則β∥γ
③若⊥γ,β∩=a,β∩γ=b,則a⊥b   ④若∥β,β∩γ=,則∩γ=
其中真命題是        

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

三條平行直線可以確定平面_________個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若直線a,b異面,則經(jīng)過a且平行于b的平面有       個。

查看答案和解析>>

同步練習冊答案