3.將函數(shù)f(x)=Asin(ωx+ϕ)(ω>0,|ϕ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{12}$單位后得到的函數(shù)圖象關(guān)于直線x=$\frac{π}{2}$對稱,且平移后所得函數(shù)的單調(diào)遞增區(qū)間為$(0,\frac{π}{2})$,則實數(shù)ϕ的值為$-\frac{π}{3}$.

分析 根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律得到平移后函數(shù)解析式為g(x)=Asin(ωx-$\frac{ωπ}{12}$+φ).由已知條件推知該函數(shù)的最小正周期為π,易得ω=2,然后結(jié)合正弦函數(shù)圖象的對稱性質(zhì)來求φ的值即可.

解答 解:將函數(shù)$f(x)=Asin(ωx+ϕ)(ω>0,|ϕ|<\frac{π}{2})$的圖象向右平移$\frac{π}{12}$單位后得到的函數(shù)g(x)=Asin(ωx-$\frac{ωπ}{12}$+φ).
∵函數(shù)f(x)=Asin(ωx-$\frac{ωπ}{12}$+φ)的單調(diào)遞增區(qū)間為$(0,\frac{π}{2})$,
∴T=$\frac{2π}{ω}$=π,則ω=2,
又平移后得到的函數(shù)圖象關(guān)于直線x=$\frac{π}{2}$對稱,
∴2×$\frac{π}{2}$-$\frac{π}{6}$+φ=$\frac{π}{2}$(k∈Z),
則φ=$-\frac{π}{3}$.
故答案是:$-\frac{π}{3}$.

點評 本題主要考查正弦函數(shù)的圖象的對稱性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在平行四邊形ABCD中,點E為邊AB的中點,BD與CE交于點P,若$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AD}(x,y∈R)$,則2x+y=;若點Q是△BCP內(nèi)部(包括邊界)一動點,且$\overrightarrow{AQ}=m\overrightarrow{AB}+n\overrightarrow{AD}(m,n∈R)$,則m+2n的取值范圍為[1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=5x+m(m為常數(shù)),則f(-log57)的值為(  )
A.4B.-4C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知正實數(shù)x,y滿足xy=1,若81x2+y2≥m恒成立,則實數(shù)m的取值范圍為( 。
A.(-∞,9]B.(-∞,18]C.[9,+∞)D.[18,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)i是虛數(shù)單位,若復(fù)數(shù)z=a+$\frac{15}{3-4i}$(a∈R)是純虛數(shù),則復(fù)數(shù)z的虛部為$-\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在下列給出的命題中,所有正確命題的序號為①②.
①函數(shù)y=2x3-3x+1的圖象關(guān)于點(0,1)成中心對稱;
②對?x,y∈R,若x+y≠0,則x≠1,或y≠-1;
③若實數(shù)x,y滿足x2+y2=1,則$\frac{y}{x+2}$的最大值為$\sqrt{3}$;
④若△ABC為鈍角三角形,∠C為鈍角,則sinA>cosB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|2x+2<1},B={x|x2-2x-3>0},則(∁RA)∩B=( 。
A.[-2,-1)B.(-∞,-2]C.[-2,-1)∪(3,+∞)D.(-2,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知長方體ABCD-A1B1C1D1,其中AB=BC=2,過A1、C1、B三點的平面截去長方體的一個角后.得到如圖所示的,且這個幾何體的體積為$\frac{40}{3}$.
(1)求幾何體ABCD-A1C1D1的表面積;
(2)若點P在線段BC1上,且A1P⊥C1D,求線段A1P的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在直三棱柱ABC-A1B1C1中,AB=2,AC=AA1=4,∠ABC=90°;
(1)求三棱錐B1-A1BC1的體積V;
(2)求異面直線A1B與AC所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案