精英家教網 > 高中數學 > 題目詳情
13.如圖,在平行四邊形ABCD中,點E為邊AB的中點,BD與CE交于點P,若$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AD}(x,y∈R)$,則2x+y=;若點Q是△BCP內部(包括邊界)一動點,且$\overrightarrow{AQ}=m\overrightarrow{AB}+n\overrightarrow{AD}(m,n∈R)$,則m+2n的取值范圍為[1,3].

分析 由題意,$\overrightarrow{AP}$=$\overrightarrow{AE}$+$\overrightarrow{EP}$=$\frac{1}{2}\overrightarrow{AB}$+$\frac{1}{3}\overrightarrow{EC}$=$\frac{1}{2}\overrightarrow{AB}$+$\frac{1}{6}\overrightarrow{AB}$+$\frac{1}{3}\overrightarrow{BC}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}\overrightarrow{AD}$,可得結論;考慮3個頂點位置的取值,可得結論.

解答 解:由題意,$\overrightarrow{AP}$=$\overrightarrow{AE}$+$\overrightarrow{EP}$=$\frac{1}{2}\overrightarrow{AB}$+$\frac{1}{3}\overrightarrow{EC}$=$\frac{1}{2}\overrightarrow{AB}$+$\frac{1}{6}\overrightarrow{AB}$+$\frac{1}{3}\overrightarrow{BC}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}\overrightarrow{AD}$,
∴x=$\frac{2}{3}$,y=$\frac{1}{3}$,∴2x+y=$\frac{5}{3}$;
Q在P點時,m=$\frac{2}{3}$,n=$\frac{1}{3}$,∴m+2n═$\frac{4}{3}$;
Q在B點時,m=1,n=0,∴m+2n=1;
Q在C點時,m=1,n=1,∴m+2n=3,
∴m+2n的取值范圍為[1,3].
故答案為$\frac{5}{3};[1,3]$.

點評 本題考查向量的線性運算,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

3.將一個長方體的四個側面和兩個底面延展成平面后,可將空間分成24部分.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥BD交于點O,E為線段PC上的點,且AC⊥BE.
(1)求證:AC⊥DE;
(2)若BC∥AD,PA=6,BC=$\frac{1}{2}AD=\sqrt{2}$,AB=CD,求異面直線DE與PA所成的角.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.如圖,已知點E為平行四邊形ABCD的邊AB上一點,$\overrightarrow{AE}$=2$\overrightarrow{EB}$,Fn(n∈N*)為邊DC上的一列點,連接AFn交BD于Gn,點Gn(n∈N*)滿足$\overrightarrow{{G_n}D}$=$\frac{1}{3}$an+1$\overrightarrow{{G_n}A}$-(3an+2)$\overrightarrow{{G_n}E}$,其中數列{an}是首項為1的正項數列,則a4的值為(  )
A.45B.51C.53D.61

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知集合A={x|log2x<8},B={x|$\frac{x+2}{x-4}$<0},C={x|a<x<a+1}.
(1)求集合A∩B;
(2)若B∪C=B,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.函數f(x)=x3-3x2+1是減函數的區(qū)間為(0,2).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.若m,n∈N*則a>b是(am-bm)•(an-bn)>0成立的(  )條件.
A.充分非必要B.必要非充分
C.充分必要D.既非充分又非必要

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.(1)在等差數列{an}中,S10=50,S20=300,求通項an
(2)已知正數等比數列{an}的前n項和Sn,且S3=a2+10a1,a5=81,求Sn

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.將函數f(x)=Asin(ωx+ϕ)(ω>0,|ϕ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{12}$單位后得到的函數圖象關于直線x=$\frac{π}{2}$對稱,且平移后所得函數的單調遞增區(qū)間為$(0,\frac{π}{2})$,則實數ϕ的值為$-\frac{π}{3}$.

查看答案和解析>>

同步練習冊答案