【題目】若無窮數(shù)列滿足:只要,必有,則稱具有性質(zhì).

1)若具有性質(zhì),且, ,求;

2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列, , , 判斷是否具有性質(zhì),并說明理由;

3)設(shè)是無窮數(shù)列,已知.求證:對任意都具有性質(zhì)的充要條件為是常數(shù)列”.

【答案】1.(2不具有性質(zhì).(3)見解析.

【解析】試題分析:(1)根據(jù)已知條件,得到,結(jié)合求解即可.

2)根據(jù)的公差為, 的公比為,寫出通項公式,從而可得

通過計算, , ,即知不具有性質(zhì)

3)從充分性、必要性兩方面加以證明,其中必要性用反證法證明.

試題解析:(1)因為,所以, ,

于是,又因為,解得

2的公差為, 的公比為,

所以,

,但, ,

所以不具有性質(zhì)

[]3)充分性:

當(dāng)為常數(shù)列時,

對任意給定的,只要,則由,必有

充分性得證.

必要性:

用反證法證明.假設(shè)不是常數(shù)列,則存在,

使得,而

下面證明存在滿足,使得,但

設(shè),取,使得,則

, ,故存在使得

,因為),所以

依此類推,得

,即

所以不具有性質(zhì),矛盾.

必要性得證.

綜上,對任意, 都具有性質(zhì)的充要條件為是常數(shù)列

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩陣將直線lxy-1=0變換成直線l′.

(1)求直線l′的方程;

(2)判斷矩陣A是否可逆?若可逆,求出矩陣A的逆矩陣A-1;若不可逆,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,底面是等腰直角三角形, ,側(cè)棱,點分別為棱的中點, 的重心為,直線垂直于平面.

1)求證:直線平面;

2)求二面角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求不等式;

(Ⅱ)若函數(shù)的最小值為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)將函數(shù)的圖像(縱坐標(biāo)不變)橫坐標(biāo)伸長為原來的倍,再把整個圖像向左平移個單位長度得到的圖像.當(dāng)時,求函數(shù)的值域;

(2)若函數(shù)內(nèi)是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將y=sinx的圖象

A. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

B. 向左平移至個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變

C. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

D. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將y=sinx的圖象

A. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

B. 向左平移至個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變

C. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

D. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,橢圓 的上焦點為,橢圓的離心率為 ,且過點

1求橢圓的方程;

2設(shè)過橢圓的上頂點的直線與橢圓交于點不在軸上,垂直于的直線與交于點,與軸交于點,若,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面的菱形, ,點EBC邊的中點,AC和DE交于點O,PO

(1)求證: ;

(2) 求二面角P-AD-C的大小。

(3)在(2)的條件下,求異面直線PBDE所成角的余弦值。

查看答案和解析>>

同步練習(xí)冊答案