【題目】如圖,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB為直徑的圓,DC的延長線與AB的延長線交于點E.
(Ⅰ)求證:DC是⊙O的切線;
(Ⅱ)若EB=6,EC=6 ,求BC的長.
【答案】證明:(Ⅰ)∵⊙O是以AB為直徑的圓,∠ACB=90°,∴點C在⊙O上,連接OC,可得∠OCA=∠OAC=∠DAC,∴OC∥AD,
又∵AD⊥DC,∴DC⊥OC,∵OC為半徑,∴DC是⊙O的切線.
(Ⅱ)解:∵DC是⊙O的切線,∴EC2=EBEA,又∵EB=6,EC=6 ,∴EA=12.
∵∠ECB=∠EAC,∠CEB=∠AEC,∴△ECB∽△EAC,∴ ,AC= BC,
∵AC2+BC2=AB2=36,∴BC=2
【解析】(Ⅰ)先得出點C在⊙O上,連接OC,可得∠OCA=∠OAC=∠DAC,從而OC∥AD,結合AD⊥DC得出DC⊥OC,從而DC是⊙O的切線(Ⅱ)利用切割線定理求出EA=12,再證出△ECB∽△EAC,得出AC= BC,在RT△ACB中求解.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,AD=PD=2,PA=2 ,∠PDC=120°,點E為線段PC的中點,點F在線段AB上.
(1)若AF= ,求證:CD⊥EF;
(2)設平面DEF與平面DPA所成二面角的平面角為θ,試確定點F的位置,使得cosθ= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了讓學生更多地了解“數(shù)學史”知識,某班級舉辦一次“追尋先哲的足跡,傾聽數(shù)學的聲音的數(shù)學史知識競賽活動.現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,制成如下頻率分布表:
序號 | 分數(shù)段 | 人數(shù) | 頻率 |
1 | 10 | 0.20 | |
2 | ① | 0.44 | |
3 | ② | ③ | |
4 | 4 | 0.08 | |
合計 | 50 | 1 |
(1)填充上述表中的空格(在解答中直接寫出對應空格序號的答案);
(2)若利用組中值近似計算數(shù)據(jù)的平均數(shù),求此次數(shù)學史初賽的平均成績;
(3)甲同學的初賽成績在,學校為了宣傳班級的學習經(jīng)驗,隨機抽取分數(shù)在的4位同學中的兩位同學到學校其他班級介紹,求甲同學被抽取到的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,平行四邊形ABCD中,AB=2AD,∠DAB=60°,M是BC的中點.將△ADM沿DM折起,使面ADM⊥面MBCD,N是CD的中點,圖2所示.
(Ⅰ)求證:CM⊥平面ADM;
(Ⅱ)若P是棱AB上的動點,當 為何值時,二面角P﹣MC﹣B的大小為60°.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為, ,且經(jīng)過點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)的頂點都在橢圓上,其中關于原點對稱,試問能否為正三角形?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為減少空氣污染,某市鼓勵居民用電(減少燃氣或燃煤),采用分段計費的方法計算電費每月用電不超過100度仍按原標準收費,超過的部分每度按0.5元計算.
Ⅰ.設月用電x度時,應交電費y元,寫出y關于x的函數(shù)關系式;
Ⅱ.小明家第一季度繳納電費情況如下:
月份 | 一月 | 二月 | 三月 | 合計 |
繳費金額 | 76元 | 63元 | 45.6元 | 184.6元 |
問小明家第一季度共用多少度?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù).
(1)函數(shù)在區(qū)間[﹣1,1]上的最小值記為,求的解析式;
(2)求(1)中的最大值;
(3)若函數(shù)在[2,4]上是單調增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com