如圖,在等腰直角△OPQ中,∠POQ=90°,OP=2
2
,點M在線段PQ上,
(Ⅰ)若OM=
5
,求PM的長;
(Ⅱ)若點N在線段MQ上,且∠MON=30°,問:當∠POM取何值時,△OMN的面積最。坎⑶蟪雒娣e的最小值.
精英家教網
(Ⅰ)在△OMP中,∠OPM=45°,OM=
5
,OP=2
2
,
由余弦定理可得,OM2=OP2+MP2-2×OP•MPcos45°,
解得PM的長為1或3;
(Ⅱ)設∠POM=α,0°≤α≤60°,在△OMP中,由正弦定理可得:
OM
sin∠OPM
=
OP
sin∠OMP
,
OM=
OPsin45°
sin(45°+α)
,
同理,ON=
OPsin45°
sin(75°+α)
,
S△OMN=
1
2
OM•ONsin∠MON

=
1
4
×
OP2sin245°
sin(45°+α)sin(75°+α)

=
1
sin(45°+α)sin(45°+α+30°)

=
1
sin(45°+α)[
3
2
sin(45°+α)+
1
2
cos(45°+α)]

=
1
3
2
sin2(45°+α)+
1
2
sin(45°+α)cos(45°+α)]

=
1
3
4
+
3
4
sin2α+
1
4
cos2α

=
1
3
4
+
1
2
sin(2α+30°)

因為0°≤α≤60°,所以30°≤2α+30°≤150°,
所以當α=30°時,sin(2α+30°)的最大值為1,
此時,△OMN的面積最小,面積的最小值8-4
3
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在多面體ABCDE中,底面△ABC為等腰直角三角形,且∠ACB=90°,側面BCDE是菱形,O點是BC的中點,EO⊥平面ABC.
(1)求異直線AC和BE所成角的大。
(2)求平面ABE與平面ADE所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖在等腰直角△ABC中,點O是斜邊BC的中點,過點O的直線分別交直線AB、AC于不同的兩點M、N,若
AB
=m
AM,
AC
=n
AN
,則mn的最大值為( 。
A、
1
2
B、1
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在平面直角坐標系xoy中,拋物線y=
1
18
x2-
4
9
x-10與x軸的交點為A,與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC、現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動.線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設動點P,Q移動的時間為t(單位:秒)
(1)求A,B,C三點的坐標和拋物線的頂點坐標;
(2)當t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當t∈(0,
9
4
)時,△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;
(4)當t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xoy中,拋物線yx 2x-10與x軸的交點為A,與y軸的交點為點B,過點Bx軸的平行線BC,交拋物線于點C,連結AC.現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動.線段OC,PQ相交于點D,過點DDEOA,交CA于點E,射線QEx軸于點F.設動點P,Q移動的時間為t(單位:秒)

(1)求AB,C三點的坐標和拋物線的頂點坐標;

(2)當t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;

(3)當t∈(0,)時,△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;

(4)當t為何值時,△PQF為等腰三角形?請寫出解答過程.

 


查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省珠海一中高三(下)第一次調研數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,在平面直角坐標系xoy中,拋物線y=x2-x-10與x軸的交點為A,與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC、現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動.線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設動點P,Q移動的時間為t(單位:秒)
(1)求A,B,C三點的坐標和拋物線的頂點坐標;
(2)當t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當t∈(0,)時,△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;
(4)當t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

同步練習冊答案