【題目】如圖,邊長為4的正方形,為中點(diǎn),為邊上一動(dòng)點(diǎn),現(xiàn)將,分別沿,折起,使得,重合為點(diǎn),形成四棱錐,過點(diǎn)作平面于.①平面平面;②當(dāng)為中點(diǎn)時(shí),三棱錐的體積為;③為的垂心;④長的取值范圍為 .則以上判斷正確的有______(填正確命題的序號(hào)).
【答案】①②④
【解析】
對(duì)于①,由面面垂直的判斷定理即可判斷;
對(duì)于②,利用等體積法求三棱錐的體積即可;
對(duì)于③,假設(shè)為垂心,則,平面,可得,又不恒為2,對(duì)于④,沿將折到四邊形內(nèi),即位置,此時(shí)沿翻折,由可得.
解:對(duì)于①,如圖所示,∵,所以折起后不變,,,,平面,∴平面,∵平面,∴平面平面,即①正確;
對(duì)于②,當(dāng)為中點(diǎn)時(shí),,∴,即②正確;
對(duì)于③,當(dāng)運(yùn)動(dòng)時(shí),若為垂心,則,平面,∴,又,∴平面,∴,∴,∴,∴,即,又不恒為2,即③不正確;對(duì)于④,如圖(3)沿將折到四邊形內(nèi),即位置,此時(shí)沿翻折,如圖,∴,∴,即④正確,
故答案為:①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,已知直線的參數(shù)方程為,曲線的極坐標(biāo)方程為
求直線的普通方程與曲線的直角坐標(biāo)方程;
若把曲線上給點(diǎn)的橫坐標(biāo)伸長為原來的倍,縱坐標(biāo)伸長為原來的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M,N,P分別是C1D1,BC,A1D1的中點(diǎn),有下列四個(gè)結(jié)論:
①AP與CM是異面直線;②AP,CM,DD1相交于一點(diǎn);③MN∥BD1;
④MN∥平面BB1D1D.
其中所有正確結(jié)論的編號(hào)是( 。
A.①④B.②④C.①④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,極點(diǎn)為,一條封閉的曲線由四段曲線組成:,,,.
(1)求該封閉曲線所圍成的圖形面積;
(2)若直線:與曲線恰有3個(gè)公共點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,且點(diǎn)在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線與橢圓交于,兩點(diǎn),在直線上存在點(diǎn),使三角形為正三角形,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,為等腰直角三角形,,D為BC的中點(diǎn).
(1)求證:平面;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列{an}中,已知a1+a3=12,a2+a4=18,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求a3+a6+a9+…+a3n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘數(shù)學(xué)家阿波羅尼奧斯在他的著作《圓錐曲線論》中記載了用平面切制圓錐得到圓錐曲線的方法.如圖,將兩個(gè)完全相同的圓錐對(duì)頂放置(兩圓錐的軸重合),已知兩個(gè)圓錐的底面半徑為1,母線長均為,記過圓錐軸的平面ABCD為平面(與兩個(gè)圓錐面的交線為AC、BD),用平行于的平面截圓錐,該平面與兩個(gè)圓錐側(cè)面的截線即為雙曲線E的一部分,且雙曲線E的兩條漸近線分別平行于AC、BD,則雙曲線E的離心率為( )
A.B.C.D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com