在具體問題中,我們首先應(yīng)該作出原始數(shù)據(jù)(x,y)的________,從________中看出數(shù)據(jù)的大致規(guī)律,再根據(jù)這個規(guī)律選擇適當(dāng)?shù)暮瘮?shù)進行擬合.

答案:散點圖,圖形
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)在回歸分析的問題中,我們可以通過對數(shù)變換把非線性回歸方程y=c1ec2x(c1>0)轉(zhuǎn)化為線性回歸方程,即兩邊取對數(shù),令z=lny,得到z=c2x+lnc1.受其啟發(fā),可求得函數(shù)y=xlog2(4x)(x>0)的值域是
[
1
2
,+∞)
[
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在回歸分析的問題中,我們可以通過對數(shù)變換把非線性回歸方程數(shù)學(xué)公式轉(zhuǎn)化為線性回歸方程,即兩邊取對數(shù),令z=lny,得到z=c2x+lnc1.受其啟發(fā),可求得函數(shù)數(shù)學(xué)公式的值域是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:泉州模擬 題型:填空題

在回歸分析的問題中,我們可以通過對數(shù)變換把非線性回歸方程y=c1ec2x(c1>0)轉(zhuǎn)化為線性回歸方程,即兩邊取對數(shù),令z=lny,得到z=c2x+lnc1.受其啟發(fā),可求得函數(shù)y=xlog2(4x)(x>0)的值域是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省泉州市高三第二次質(zhì)量檢測數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在回歸分析的問題中,我們可以通過對數(shù)變換把非線性回歸方程轉(zhuǎn)化為線性回歸方程,即兩邊取對數(shù),令z=lny,得到z=c2x+lnc1.受其啟發(fā),可求得函數(shù)的值域是   

查看答案和解析>>

同步練習(xí)冊答案