精英家教網 > 高中數學 > 題目詳情
(2013•鹽城一模)在△ABC中,若9cos2A-4cos2B=5,則
BC
AC
的值為
2
3
2
3
分析:由條件 9cos2A-4cos2B=5 利用二倍角公式求得
sinA
sinB
=
2
3
,再由正弦定理可得
BC
AC
=
sinA
sinB
,從而得到答案.
解答:解:在△ABC中,∵9cos2A-4cos2B=5,∴9(1-2sin2A )-4(1-2sin2B)=5,
化簡可得 9sin2A=4sin2B,故有
sinA
sinB
=
2
3

由正弦定理可得
BC
AC
=
sinA
sinB
=
2
3
,
故答案為
2
3
點評:本題主要考查二倍角公式、正弦定理的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•鹽城一模)已知f(x)=(2+
x
)n
,其中n∈N*
(1)若展開式中含x3項的系數為14,求n的值;
(2)當x=3時,求證:f(x)必可表示成
s
+
s-1
(s∈N*)的形式.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鹽城一模)若數列{an}是首項為6-12t,公差為6的等差數列;數列{bn}的前n項和為Sn=3n-t.
(1)求數列{an}和{bn}的通項公式;
(2)若數列{bn}是等比數列,試證明:對于任意的n(n∈N,n≥1),均存在正整數Cn,使得bn+1=a cn,并求數列{cn}的前n項和Tn;
(3)設數列{dn}滿足dn=an•bn,且{dn}中不存在這樣的項dt,使得“dk<dk-1與dk<dk+1”同時成立(其中k≥2,k∈N*),試求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鹽城一模)如圖,在等腰三角形ABC中,底邊BC=2,
AD
=
DC
,
AE
=
1
2
EB
,若
BD
AC
=
1
2
,則
CE
AB
=
0
0

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鹽城一模)D.(選修4-5:不等式選講)
設a1,a2,…an 都是正數,且 a1•a2…an=1,求證:(1+a1)(1+a2)…(1+an)≥2n

查看答案和解析>>

同步練習冊答案