分析 (Ⅰ)利用面積公式和已知等式求得tanB的值,進而求得B.
(Ⅱ)由已知利用同角三角函數(shù)基本關系式可求sin∠ADB,由正弦定理可得AD的值,在△ADC中,由余弦定理可求b的值.
解答 (本題滿分為12分)
解:(Ⅰ)由已知得$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{2}$cacosB,
∴tanB=$\sqrt{3}$,
∵0<B<π,
∴B=$\frac{π}{3}$…6分
(Ⅱ)∵cos∠ADB=-$\frac{1}{7}$,∠ADB∈(0,π),
∴sin∠ADB=$\sqrt{1-co{s}^{2}∠ADB}$=$\frac{4\sqrt{3}}{7}$,
∴在△ABD中,由正弦定理可得:AD=$\frac{ABsin∠ABD}{sin∠ADB}$=$\frac{8×\frac{\sqrt{3}}{2}}{\frac{4\sqrt{3}}{7}}$=7,
在△ADC中,由余弦定理得b2=AD2+CD2-2AD•CD•cos∠ADC,
∵cos$∠ADC=-cos∠ADB=\frac{1}{7}$,
∴b=$\sqrt{{7}^{2}+{2}^{2}-2×7×2×\frac{1}{7}}$=7…12分
點評 本題主要考查了三角形的面積公式,同角三角函數(shù)基本關系式,正弦定理和余弦定理的應用.注重了對學生基礎知識的考查,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{{2\sqrt{3}π}}{3}$ | D. | $\frac{{2\sqrt{3}π}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com