已知定義在
R上的函數(shù)
,其中
a為常數(shù).
(I)若
x=1是函數(shù)
的一個極值點,求
a的值;
(II)若函數(shù)
在區(qū)間(-1,0)上是增函數(shù),求
a的取值范圍;
(III)若函數(shù)
,在
x=0處取得最大值,求正數(shù)
a的取值范圍.
1)a="2 " (2)a
(3)0<a
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
設函數(shù)
的單調減區(qū)間是(1,2)
⑴求
的解析式;
⑵若對任意的
,關于
的不等式
在
時有解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(理數(shù))(14分) 已知函數(shù)
,
.
(Ⅰ)設函數(shù)F(x)=18f(x)-
[h(x)]
,求F(x)的單調區(qū)間與極值;
(Ⅱ)設
,解關于x的方程
;
(Ⅲ)設
,證明:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題13分)
已知f(x)=lnx+x
2-bx.
(1)若函數(shù)f(x)在其定義域內是增函數(shù),求b的取值范圍;
(2)當b=-1時,
設g(x)=f(x)-2x
2,求證函數(shù)g(x)只有一個零點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分16分)
已知函數(shù)
.
(1)求函數(shù)
在點
處的切線方程;
(2)若
在區(qū)間
上恒成立,求
的取值范圍;
(3)當
時,求證:在區(qū)間
上,滿足
恒成立的函數(shù)
有無窮多個.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)若直線
過點
,且與曲線
和
都相切,
求實數(shù)
的值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
=
(e為自然對數(shù)的底數(shù))
(Ⅰ)求函數(shù)
單調遞增區(qū)間;(5分)
(Ⅱ)若
,求函數(shù)
在區(qū)間[0,
]上的最大值和最小值.(5分)
(III)若函數(shù)
的圖象有三個不同的交點,求實數(shù)k的取值范圍.
(參考數(shù)據(jù)
)(2分)
查看答案和解析>>