【題目】已知等差數(shù)列中, , .
(1)求的通項公式;
(2)設,求數(shù)列的前項和.
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)等差數(shù)列中, , 列出關(guān)于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)由(1)可得 ,利用裂項相消法求解即可.
試題解析:(1)由,得,解得.
所以,數(shù)列的通項公式為.
(2) ,
所以的前項和 .
所以.
【方法點晴】本題主要考查等差數(shù)列的通項公式,以及裂項相消法求數(shù)列的和,屬于中檔題. 裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:(1) ;(2) ; (3);(4) ;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結(jié)果錯誤.
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)年至年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如表:
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,分析年至年該地區(qū)農(nóng)村居民家庭人純收入的變化情況,并預測該地區(qū)年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下結(jié)論正確的序號有_________
(1)根據(jù)列聯(lián)表中的數(shù)據(jù)計算得出≥6.635, 而P(≥6.635)≈0.01,則有99% 的把握認為兩個分類變量有關(guān)系.
(2)在殘差圖中,殘差點比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關(guān).
(3)在線性回歸分析中,相關(guān)系數(shù)為,越接近于1,相關(guān)程度越大;越小,相關(guān)程度越小.
(4)在回歸直線中,變量時,變量的值一定是15.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司制定了一個激勵銷售人員的獎勵方案:當銷售利潤不超過10萬元時,按銷售利潤的16%進行獎勵;當銷售利潤超過10萬元時,若超出A萬元,則超出部分按2log5(A+1)進行獎勵.記獎金y(單位:萬元),銷售利潤x(單位:萬元)
(1)寫出該公司激勵銷售人員的獎勵方案的函數(shù)模型;
(2)如果業(yè)務員老張獲得5.6萬元的獎金,那么他的銷售利潤是多少萬元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設P1 , P2 , …Pn為平面α內(nèi)的n個點,在平面α內(nèi)的所有點中,若點P到點P1 , P2 , …Pn的距離之和最小,則稱點P為P1 , P2 , …Pn的一個“中位點”,例如,線段AB上的任意點都是端點A,B的中位點,現(xiàn)有下列命題:
①若三個點A、B、C共線,C在線段AB上,則C是A,B,C的中位點;
②直角三角形斜邊的中點是該直角三角形三個頂點的中位點;
③若四個點A、B、C、D共線,則它們的中位點存在且唯一;
④梯形對角線的交點是該梯形四個頂點的唯一中位點.
其中的真命題是(寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費用為8萬元。設f(x)為隔熱層建造費用與20年的能源消耗費用之和。
(Ⅰ)求k的值及f(x)的表達式。
(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義為n個正數(shù)的“均倒數(shù)”.已知正項數(shù)列{an}的前n項的“均倒數(shù)”為.
(1)求數(shù)列{an}的通項公式.
(2)設數(shù)列的前n項和為,若4<對一切恒成立試求實數(shù)m的取值范圍.
(3)令,問:是否存在正整數(shù)k使得對一切恒成立,如存在求出k值,否則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設全集為R,函數(shù) 的定義域為M,則RM為( )
A.[﹣1,1]
B.(﹣1,1)
C.(﹣∞,﹣1]∪[1,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com